Before this change each built-in iterator object has a boolean
`m_next_method_was_redefined`. If user code later changed the iterator’s
prototype (e.g. `Object.setPrototypeOf()`), we still believed the
built-in fast-path was safe and skipped the user supplied override,
producing wrong results.
With this change
`BuiltinIterator::as_builtin_iterator_if_next_is_not_redefined()` looks
up the current `next` property and verifies that it is still the
built-in native function.
We already have fast path for built-in iterators that skips `next()`
lookup and iteration result object allocation applied for `for..of` and
`for..in` loops. This change extends it to `iterator_step()` to cover
`Array.from()`, `[...arr]` and many other cases.
Makes following function go 2.35x faster on my computer:
```js
(function f() {
let arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
for (let i = 0; i < 1000000; i++) {
let [a, ...rest] = arr;
}
})();
```
81b6a11 regressed correctness by always bypassing the `next()` method
resolution for built-in iterators, causing incorrect behavior when
`next()` was redefined on built-in prototypes. This change fixes the
issue by storing a flag on built-in prototypes indicating whether
`next()` has ever been redefined.
"return" method is not defined on any of builtin iterators, so we could
skip it, avoiding method lookup.
I measured 10% improvement in array-destructuring-assignment.js micro
benchmark with this change.
Resulting in a massive rename across almost everywhere! Alongside the
namespace change, we now have the following names:
* JS::NonnullGCPtr -> GC::Ref
* JS::GCPtr -> GC::Ptr
* JS::HeapFunction -> GC::Function
* JS::CellImpl -> GC::Cell
* JS::Handle -> GC::Root
The main motivation behind this is to remove JS specifics of the Realm
from the implementation of the Heap.
As a side effect of this change, this is a bit nicer to read than the
previous approach, and in my opinion, also makes it a little more clear
that this method is specific to a JavaScript Realm.