Now we don't send raw numbers, but we let the IRQController object to
figure out the correct IRQ number.
This helps in a situation when we have 2 or more IOAPICs, so if IOAPIC
1 is assigned for IRQs 0-23 and IOAPIC 2 is assigned for IRQs 24-47,
if an IRQHandler of IRQ 25 invokes disable() for example, it will call
his responsible IRQController (IOAPIC 2), and the IRQController will
subtract the IRQ number with his assigned offset, and the result is that
the second redirection entry in IOAPIC 2 will be masked.
Also, InterruptDisabler were added to prevent critical function from
being interrupted. In addition, the interrupt numbers are abstracted
from IDT offsets, thus, allowing to create a better routing scheme
when using IOAPICs for interrupt redirection.
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
The IRQController object is RefCounted, and is shared between the
InterruptManagement class & IRQ handlers' classes.
IRQHandler, SharedIRQHandler & SpuriousInterruptHandler classes
use a responsible IRQ controller directly instead of calling
InterruptManagement for disable(), enable() or eoi().
Also, the initialization process of InterruptManagement is
simplified, so it doesn't rely on an ACPI parser to be initialized.
Now the ACPI & PCI code is more safer, because we don't use raw pointers
or references to objects or data that are located in the physical
address space, so an accidental dereference cannot happen easily.
Instead, we use the PhysicalAddress class to represent those addresses.
The GenericInterruptHandler class will be used to represent
an abstract interrupt handler. The InterruptManagement class will
represent a centralized component to manage interrupts.