This is actually safe everywhere but in the topmost program scope.
For web compatibility reasons, we have to flush all top-level bindings
to the environment, in case a subsequent separate <script> program
comes looking for them.
By using separate struct we can avoid updating AST node and
ECMAScriptFunctionObject constructors every time there is a need to
add or remove some additional information colllected during parsing.
Allows to skip function environment allocation for non-arrow functions
if the only reason it is needed is to hold `this` binding.
The parser is changed to do following:
- If a function is an arrow function and uses `this` then all functions
in a scope chain are marked to allocate function environment for
`this` binding.
- If a function uses `new.target` then all functions in a scope chain
are marked to allocate function environment.
`ordinary_call_bind_this()` is changed to put `this` value in execution
context when function environment allocation is skipped.
35% improvement in Octane/typescript.js
50% improvement in Octane/deltablue.js
19% improvement in Octane/raytrace.js
If a function has the following properties:
- uses only local variables and registers
- does not use `this`
- does not use `new.target`
- does not use `super`
- does not use direct eval() calls
then it is possible to entirely skip function environment allocation
because it will never be used
This change adds gathering of information whether a function needs to
access `this` from environment and updates `prepare_for_ordinary_call()`
to skip allocation when possible.
For now, this optimisation is too aggressively blocked; e.g. if `this`
is used in a function scope, then all functions in outer scopes have to
allocate an environment. It could be improved in the future, although
this implementation already allows skipping >80% of environment
allocations on Discord, GitHub and Twitter.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
In particular, this patch focuses on:
- Updating the old "import assertions" to the new "import attributes"
- Allowing realms as module import referrer
When deciding whether we need to create a full-blown `arguments` object,
we look at various things, starting as early as in the parser.
Until now, if the parser saw the identifier `arguments`, we'd decide
that it's enough of a clue that we should create the `arguments` object
since somebody is obviously accessing it.
However, that missed the case where someone is just accessing a property
named `arguments` on some object. In such cases (`o.arguments`), we now
hold off on creating an `arguments` object.
~11% speed-up on Octane/typescript.js :^)
This change fixes an issue where identifiers used in default function
parameters were being "registered" in the function's parent scope
instead of its own scope. This bug resulted in incorrectly detected
local variables. (Variables used in the default function parameter
expression should be considered 'captured by nested function'.)
To resolve this issue, the function scope is now created before parsing
function parameters. Since function parameters can no longer be passed
in the constructor, a setter function has been introduced to set them
later, when they are ready.
This modification enables the parser to determine whether an identifier
used within a function refers to a local variable or not. In this
context, a local identifier means that it is not captured by any nested
function declaration which means it modified only from inside a
function.
The information about whether identifier is local is stored inside
Identifier AST node and also contains information about the index of
local variable inside a function and information about total number
of local variables used by a function is stored in function nodes.
Previously we were unable to parse code like `yield/2` because `/2`
was parsed as a regex. At the same time `for (a in / b/)` was parsed
as a division.
This is solved by defaulting to division in the lexer, but calling
`force_slash_as_regex()` from the parser whenever an IdentifierName
is parsed as a ReservedWord.
In this patch only top level and not the more complicated for loop using
statements are supported. Also, as noted in the latest meeting of tc39
async parts of the spec are not stage 3 thus not included.
DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This was state only used by the parser to output an error with
appropriate location. This shrinks the size of ObjectExpression from
120 bytes down to just 56. This saves roughly 2.5 MiB when loading
twitter.
Before this change, each AST node had a 64-byte SourceRange member.
This SourceRange had the following layout:
filename: StringView (16 bytes)
start: Position (24 bytes)
end: Position (24 bytes)
The Position structs have { line, column, offset }, all members size_t.
To reduce memory consumption, AST nodes now only store the following:
source_code: NonnullRefPtr<SourceCode> (8 bytes)
start_offset: u32 (4 bytes)
end_offset: u32 (4 bytes)
SourceCode is a new ref-counted data structure that keeps the filename
and original parsed source code in a single location, and all AST nodes
have a pointer to it.
The start_offset and end_offset can be turned into (line, column) when
necessary by calling SourceCode::range_from_offsets(). This will walk
the source code string and compute line/column numbers on the fly, so
it's not necessarily fast, but it should be rare since this information
is primarily used for diagnostics and exception stack traces.
With this, ASTNode shrinks from 80 bytes to 32 bytes. This gives us a
~23% reduction in memory usage when loading twitter.com/awesomekling
(330 MiB before, 253 MiB after!) :^)
This requires a special case with names as the default function is
supposed to have a unique name ("*default*" in our case) but when
checked should have name "default".
Since tagged template literals can inspect the raw string it is not a
syntax error to have invalid escapes. However the cooked value should be
`undefined`.
We accomplish this by tracking whether parse_string_literal
fails and then using a NullLiteral (since UndefinedLiteral is not a
thing) and finally converting null in tagged template execution to
undefined.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
This commit has no behavior changes.
In particular, this does not fix any of the wrong uses of the previous
default parameter (which used to be 'false', meaning "only replace the
first occurence in the string"). It simply replaces the default uses by
String::replace(..., ReplaceMode::FirstOnly), leaving them incorrect.
While adding spec comments to PerformEval, I noticed we were missing
multiple steps.
Namely, these were:
- Checking if the host will allow us to compile the string
(allowing LibWeb to perform CSP for eval)
- The parser's initial state depending on the environment around us
on direct eval:
- Allowing new.target via eval in functions
- Allowing super calls and super properties via eval in classes
- Disallowing the use of the arguments object in class field
initializers at eval's parse time
- Setting ScriptOrModule of eval's execution context
The spec allows us to apply the additional parsing steps in any order.
The method I have gone with is passing in a struct to the parser's
constructor, which overrides the parser's initial state to (dis)allow
the things stated above from the get-go.
The same expression is not allowed to contain both the
logical && and || operators, and the coalescing ?? operator.
This patch changes how "forbidden" tokens are handled, using a
finite set instead of an Vector. This supports much more efficient
merging of the forbidden tokens when propagating forward, and
allowing the return of forbidden tokens to parent contexts.
This patch makes check_identifier_name_for_assignment_validity()
take a FlyString instead of a StringView. We then exploit this by
passing FlyString in more places via flystring_value().
This gives a ~1% speedup when parsing the largest Discord JS file.
The big changes are:
- Allow strings as Module{Export, Import}Name
- Properly track declarations in default export statements
However, the spec is a little strange in that it allows function and
class declarations without a name in default export statements.
This is quite hard to fully implement without rewriting more of the
parser so for now this behavior is emulated by faking things with
function and class expressions. See the comments in
parse_export_statement for details on the hacks and where it goes wrong.
The three major changes are:
- Parsing parameters, the function body, and then the full assembled
function source all separately. This is required by the spec, as
function parameters and body must be valid each on their own, which
cannot be guaranteed if we only ever parse the full function.
- Returning an ECMAScriptFunctionObject instead of a FunctionExpression
that needs to be evaluated separately. This vastly simplifies the
{Async,AsyncGenerator,Generator,}Function constructor implementations.
Drop '_node' from the function name accordingly.
- The prototype is now determined via GetPrototypeFromConstructor and
passed to OrdinaryFunctionCreate.
This includes:
- Parsing proper LabelledStatements with try_parse_labelled_statement()
- Removing LabelableStatement
- Implementing the LoopEvaluation semantics via loop_evaluation() in
each IterationStatement subclass; and IterationStatement evaluation
via {For,ForIn,ForOf,ForAwaitOf,While,DoWhile}Statement::execute()
- Updating ReturnStatement, BreakStatement and ContinueStatement to
return the appropriate completion types
- Basically reimplementing TryStatement and SwitchStatement according to
the spec, using completions
- Honoring result completion types in AsyncBlockStart and
OrdinaryCallEvaluateBody
- Removing any uses of the VM unwind mechanism - most importantly,
VM::throw_exception() now exclusively sets an exception and no longer
triggers any unwinding mechanism.
However, we already did a good job updating all of LibWeb and userland
applications to not use it, and the few remaining uses elsewhere don't
rely on unwinding AFAICT.
This allows us to only perform checks like export bindings existing only
for modules. Also this makes it easier to set strict and other state
variables with TemporaryChanges.
This commit adds support for the most bare bones version of async
functions, support for async generator functions, async arrow functions
and await expressions are TODO.
This saves having to save and load the parser state.
This could give an incorrect token in some cases where the parser
communicates to the lexer. However this is not applicable in any of the
current usages and this would require one to parse the current token
as normal which is exactly what you don't want to do in that scenario.
We now propagate this flag to FunctionDeclaration, and then also into
ECMAScriptFunctionObject.
This will be used to disable optimizations that aren't safe in the
presence of direct eval().