The special empty value (that we use for array holes, Optional<Value>
when empty and a few other other placeholder/sentinel tasks) still
exists, but you now create one via JS::js_special_empty_value() and
check for it with Value::is_special_empty_value().
The main idea here is to make it very unlikely to accidentally create an
unexpected special empty value.
Instead of adding a flag for the two callers that need a pop of the
execution context stack when invoking continue_async_execution inline
the pop of the execution context.
This makes the management of these stacks and surrounding VERIFY calls
much more obvious.
From what I understand, the suspension steps are not required now,
or in the future for our implementation, or any other. The intent
is already implemented in the spec pushing on another execution
context to the stack and leaving the running execution context as-is.
The resume steps are a slightly different story as there is some subtle
behavior which the spec is trying to convey where some custom logic may
need to be done when one execution context changes from one to another.
It may be worth implementing those steps at a later point in time so
that this behavior is a bit easier to follow in those cases.
To make the situation more confusing - from what I can gather from the
spec, not all cases that the spec mentions resume actually means
anything normative. Resume is only _actually_ needed in a limited set
of locations.
For now, let's just remove the unneeded FIXMEs that indicate that there
is something to be done for the suspension steps, as there is not, and
leave the resume steps as is.
Resulting in a massive rename across almost everywhere! Alongside the
namespace change, we now have the following names:
* JS::NonnullGCPtr -> GC::Ref
* JS::GCPtr -> GC::Ptr
* JS::HeapFunction -> GC::Function
* JS::CellImpl -> GC::Cell
* JS::Handle -> GC::Root
The main motivation behind this is to remove JS specifics of the Realm
from the implementation of the Heap.
As a side effect of this change, this is a bit nicer to read than the
previous approach, and in my opinion, also makes it a little more clear
that this method is specific to a JavaScript Realm.
Async functions whose promise is never resolved were leaking, since they
had a strong root JS::Handle on themselves.
This doesn't appear to actually be necessary, since the wrapper will be
kept alive as long as it's reachable (and if it's not reachable, nobody
is going to resolve/reject the promise either).
This fixes the vast majority of leaks on Speedometer, bringing memory
usage at the end of a full run from ~12 GiB to ~3 GiB.