This concept is rarely used in codebase and very much error-prone
if you forget to check it.
Instead, make it so that operations that would produce invalid integers
return an error instead.
Before:
- a separate Word element allocation of the underlying Vector<Word> was
necessary for every new word in a multi-word shift
- two additional temporary UnsignedBigInteger buffers were allocated
and passed through, including in downstream calls (e.g. Multiplication)
- an additional allocation and word shift for the carry
- FIXME note seems to point to some of these issues
After:
- main change is in LibCrypto/BigInt/Algorithms/BitwiseOperations.cpp
- one single allocation per call, using shift_left_by_n_words
- only the input "number" and "output" need to be allocated by the
caller
- downstream calls are adapted not to allocate or pass temporary
buffers
- noticeable performance improvement when running TestBigInteger:
0.41-0.42s (before) to 0.28-0.29s (after) Intel Core i9 laptop
Bonus: remove unused variables from UnsignedBigInteger::divided_by
- These were likely cut-and-paste artifacts from
UnsignedBigInteger::multiplied_by; not caught by "unused-varible".
NOTE: making this change in a separate commit than shift_right, even if
it touches the same file BitwiseOperations.cpp since:
- it is a "bonus" addition: not necessary for fixing the shift_right
bug, but logically unrelated to the shift_right code
- it brings a chain of downstream interface modifications (7 files),
unrelated to shift_right
- Before: UnsignedBigInteger::shift_right( n ) trigger index
verification error for n>31. An assumption of
num_bits<UnsignedBigInteger::BITS_IN_WORD was being made
- After: shift_right( n ) works correctly for n>31.
NOTE: "bonus" change; not necessary for fixing BigFraction::to_double
This replaces the old `OAEP` implementation with one backed by OpenSSL.
The changes also include some added modularity to the RSA class by
making the `RSA_EME` and `RSA_EMSE` for encryption/decryption and
signing/verifying respectively.
This commit replaces the old implementation of `EMSA_PKCS1_V1_5` with
one backed by OpenSSL. In doing so, the `sign` and `verify` methods of
RSA have been modified to behave like expected and not just be
encryption and decryption.
I was not able to split this commit because the changes to `verify` and
`sign` break pretty much everything.
It used to be that the caller would supply a buffer to write the output
to. This created an anti-pattern in multiple places where the caller
would allocate a `ByteBuffer` and then use `.bytes()` to provide it to
the `PKSystem` method. Then the callee would resize the output buffer
and reassign it, but because the resize was on `Bytes` and not on
`ByteBuffer`, the caller using the latter would cause a bug.
Additionally, in pretty much all cases the buffer was pre-allocated
shortly before.
This required multiple changes:
- Make hashes non-copiable because they contain a heap allocated pointer
- Reference classes via `NonnullOwnPtr` only (they are non-copiable)
- Drop all existing hashes implementations
- Use the `OpenSSLHashFunction` base class to implement the same hashes
I was not able to come up with a way to divide this commit into multiple
without increasing the amount of changes.
Nothing breaks with this commit!
- Removed the constructor taking a (n, d, e) tuple and moved
it to `RSAPrivateKey`
- Removed default constructor with key generation because it was always
misused and the default key size is quite small
- Added utility constructors to accept a key pair, public key, private
key or both
- Made constructor parameters const
- Updated test to use generated random keys where possible
The previous implementation of `ModularInverse` was flaky and did not
compute the correct value in many occasions, especially with big numbers
like in RSA.
Also added a bunch of tests with big numbers.
The decoding inside `RSA::parse_rsa_key` is quite complex because it
tries to understand if it's decoding PKCS#8 or PKCS#1. Simplify the code
by moving the burden to the PEM decoder.
Add support for encoding parameters in `wrap_in_private_key_info` and
`wrap_in_subject_public_key_info` as well as turn `Span<int>` into
`Span<int const>`.
The following command was used to clang-format these files:
clang-format-18 -i $(find . \
-not \( -path "./\.*" -prune \) \
-not \( -path "./Base/*" -prune \) \
-not \( -path "./Build/*" -prune \) \
-not \( -path "./Toolchain/*" -prune \) \
-not \( -path "./Ports/*" -prune \) \
-type f -name "*.cpp" -o -name "*.mm" -o -name "*.h")
There are a couple of weird cases where clang-format now thinks that a
pointer access in an initializer list, e.g. `m_member(ptr->foo)`, is a
lambda return statement, and it puts spaces around the `->`.