To support this, how we declare logical property aliases has changed.
Instead of `logical-alias-for` being a list of properties, it's now an
object with a `group` and `mapping`. The group is the name of a logical
property group in LogicalPropertyGroups.json. The mapping is which
side/dimension/corner this property is. Hopefully it's self-explanatory
enough.
The generated code is very much a copy of what was previously in
`StyleComputer::map_logical_alias_to_physical_property_id()`, so there
should be no behaviour change.
This adds support for async iterators of the form:
async iterable<value_type>;
async iterable<value_type>(/* arguments... */);
It does not yet support the value pairs of the form:
async iterable<key_type, value_type>;
async iterable<key_type, value_type>(/* arguments... */);
Async iterators have an optional `return` data property. There's not a
particularly good way to know what interfaces implement this property.
So this adds a new extended attribute, DefinesAsyncIteratorReturn, which
interfaces can use to declare their support.
Add a new JSON file describing at-rule descriptors, and then use it to
generate a DescriptorID enum, and code to check if it's accepted in a
given at-rule.
There are two changes happening here: a correctness fix, and an
optimization. In theory they are unrelated, but the optimization
actually paves the way for the correctness fix.
Before this commit, the HTML tokenizer would attempt to look for named
character references by checking from after the `&` until the end of
m_decoded_input, which meant that it was unable to recognize things like
named character references that are inserted via `document.write` one
byte at a time. For example, if `∉` was written one-byte-at-a-time
with `document.write`, then the tokenizer would only check against `n`
since that's all that would exist at the time of the check and therefore
erroneously conclude that it was an invalid named character reference.
This commit modifies the approach taken for named character reference
matching by using a trie-like structure (specifically, a deterministic
acyclic finite state automaton or DAFSA), which allows for efficiently
matching one-character-at-a-time and therefore it is able to pick up
matching where it left off after each code point is consumed.
Note: Because it's possible for a partial match to not actually develop
into a full match (e.g. `¬indo` which could lead to `⋵̸`),
some backtracking is performed after-the-fact in order to only consume
the code points within the longest match found (e.g. `¬indo` would
backtrack back to `¬`).
With this new approach, `document.write` being called one-byte-at-a-time
is handled correctly, which allows for passing more WPT tests, with the
most directly relevant tests being
`/html/syntax/parsing/html5lib_entities01.html`
and
`/html/syntax/parsing/html5lib_entities02.html`
when run with `?run_type=write_single`. Additionally, the implementation
now better conforms to the language of the spec (and resolves a FIXME)
because exactly the matched characters are consumed and nothing more, so
SWITCH_TO is able to be used as the spec says instead of RECONSUME_IN.
The new approach is also an optimization:
- Instead of a linear search using `starts_with`, the usage of a DAFSA
means that it is always aware of which characters can lead to a match
at any given point, and will bail out whenever a match is no longer
possible.
- The DAFSA is able to take advantage of the note in the section
`13.5 Named character references` that says "This list is static and
will not be expanded or changed in the future." and tailor its Node
struct accordingly to tightly pack each node's data into 32-bits.
Together with the inherent DAFSA property of redundant node
deduplication, the amount of data stored for named character reference
matching is minimized.
In my testing:
- A benchmark tokenizing an arbitrary set of HTML test files was about
1.23x faster (2070ms to 1682ms).
- A benchmark tokenizing a file with tens of thousands of named
character references mixed in with truncated named character
references and arbitrary ASCII characters/ampersands runs about 8x
faster (758ms to 93ms).
- The size of `liblagom-web.so` was reduced by 94.96KiB.
Some technical details:
A DAFSA (deterministic acyclic finite state automaton) is essentially a
trie flattened into an array, but it also uses techniques to minimize
redundant nodes. This provides fast lookups while minimizing the
required data size, but normally does not allow for associating data
related to each word. However, by adding a count of the number of
possible words from each node, it becomes possible to also use it to
achieve minimal perfect hashing for the set of words (which allows going
from word -> unique index as well as unique index -> word). This allows
us to store a second array of data so that the DAFSA can be used as a
lookup for e.g. the associated code points.
For the Swift implementation, the new NamedCharacterReferenceMatcher
was used to satisfy the previous API and the tokenizer was left alone
otherwise. In the future, the Swift implementation should be updated to
use the same implementation for its NamedCharacterReference state as
the updated C++ implementation.
It might be a good idea to do this on other platforms as well, but at
least on Windows, the command line for GenerateWindowOrWorkerInterfaces
becomes too large.
The CSSOM spec tells us to potentially add up to three different IDL
attributes to CSSStyleDeclaration for every CSS property we support:
- A camelCased attribute, where a dash indicates the next character
should be uppercase
- A camelCased attribute for every -webkit- prefixed property, with the
first letter always being lowercase
- A dashed-attribute for every property with a dash in it.
Additionally, every attribute must have the CEReactions and
LegacyNullToEmptyString extended attributes specified on it.
Since we specify every property we support with Properties.json, we can
use that file to generate the IDL file and it's implementation.
We import it from the Build directory with the help of multiple import
base paths. Then, we add it to CSSStyleDeclaration via the mixin
functionality and inheriting the generated class in
CSSStyleDeclaration.
This is only used for CSS style sheets. One case wants it as a String,
and the others don't care, but will in future also want to have the
source as a String.
For a long time, we've used two terms, inconsistently:
- "Identifier" is a spec term, but refers to a sequence of alphanumeric
characters, which may or may not be a keyword. (Keywords are a
subset of all identifiers.)
- "ValueID" is entirely non-spec, and is directly called a "keyword" in
the CSS specs.
So to avoid confusion as much as possible, let's align with the spec
terminology. I've attempted to change variable names as well, but
obviously we use Keywords in a lot of places in LibWeb and so I may
have missed some.
One exception is that I've not renamed "valid-identifiers" in
Properties.json... I'd like to combine that and the "valid-types" array
together eventually, so there's no benefit to doing an extra rename
now.
For now, part of this is commented-out. Our current implementations of
`<mask>` and `<symbol>` rely on creating layout nodes, so they can't be
`display: none`.
We now apply MathML's default user agent style sheet along with other
default styles. This sheet is not mixed in with the other styles in
CSS/Default.css because it is a namespaced stylesheet and so has to
be its own sheet.
We weren't installing a lot of generated sources for the top level Lagom
build or for LibWeb, making it impossible to use LibWeb from a
find_package. ...And also Kernel/API/KeyCode.h, which is included by
no less than 8 different files in Userland/Libraries. We also weren't
installing any Ladybird header files.
This reduces the number of tasks to schedule, and the complexity of the
build system integrations for the BindingsGenerator. As a bonus, we move
the "only write if changed" feature into the generator to reduce the
build system load on generated files for this generator.
These are treated differently as the interface members are placed on the
object itself, not its prototype.
As the object itself still needs to be hand-written code, and we can no
longer fully hide the gnarly generated code in the prototype object,
these now generate a 'mixin' class that is added to the actual object
through inheritance.
https://webidl.spec.whatwg.org/#Global
Currently, for each exposed interface, we generate one massive function
to create every Web constructor and prototype. In an effort to lazily
create these instead, this first step is to extract the creation of each
of these into its own method.
First, this generates a forwarding header for all IDL types. This is to
allow callers to remain unchanged without forcing them to include the
(very heavy) generated IDL headers. This header is included by LibWeb's
forwarding header.
Next, this defines a base template method on Web::Bindings::Intrinsics
to create a prototype/constructor pair. Specializations of this template
are now generated in a new .cpp file, IntrinsicDefinitions.cpp. The base
Intrinsics class is updated to use this new method, and will continue to
cache the result.
Last, some WebAssembly classes are updated to use this new mechanism.
They were using some ad hoc cache keys that are now in line with the
generated specializations.
That one massive function is still used to invoke these specializations,
so they are not lazy as of this commit.
This commit teaches BindingsGenerator to generate depfiles, which can be
used by CMake to ensure that bindings are properly regenerated when
imported IDL files change.
Two new options, `--depfile` and `--depfile-target` are added.
- `--depfile` sets the path for the dependency file.
- `--depfile-target` lets us set a target name different than the output
file in the depfile. This option is needed because generated files are
first written to a temporary file, but depfiles have to refer to the
final location.
These are analogous to GCC's `-MF` and `-MT` options respectively. The
depfile's syntax matches the ones generated by GCC.
Note: This changes the minimal required CMake version to 3.20 if the
Make generator is used, and to 3.21 for the Xcode generator. Ninja is
not affected.
We have logic for serenity_generated_sources which works well for source
files that are specified in GENERATED_SOURCES prior to calling
serenity_lib or serenity_bin. However, code generated with
invoke_generator, and the LibWeb generators do not always follow the
pattern of the IDL and GML files.
For the LibWeb generators, we can just add_dependencies to LibWeb at the
time we declare the generate_Foo custom target. However for LibLocale,
LibTimeZone, and LibUnicode, we don't have the name of the target
available, so export the name in a variable to set into
GENERATED_SOURCES.
To make this work for Lagom, we need to make sure that lagom_lib and
serenity_bin in Lagom/CMakeLists.txt call serenity_generated_sources on
the target.
This enables the Xcode generator on macOS hosts, at least for Lagom.
Also do this for Shell.
This greatly simplifies the CMakeLists in Lagom, replacing many glob
patterns with a big list of libraries. There are still a few special
libraries that need some help to conform to the pattern, like LibELF and
LibWebView.
It also lets us remove essentially all of the Serenity or Lagom binary
directory detection logic from code generators, as now both projects
directories enter the generator logic from the same place.
This new code generator takes all the .idl files in LibWeb, looks for
each top level interface in there with an [Exposed=Foo] attribute, and
adds code to add the constructor and prototype for each of those exposed
interfaces to the realm of the relevant global object we're initialzing.
It will soon replace WindowObjectHelper as the way that web interfaces
are added to the Window object, and will be used in the future for
creating proper WorkerGlobalScope objects for dedicated and shared
workers.
This code generator no longer creates JS wrappers for platform objects
in the old sense, instead they're JS objects internally themselves.
Most of what we generate now are prototypes - which can be seen as
bindings for the internal C++ methods implementing getters, setters, and
methods - as well as object constructors, i.e. bindings for the internal
create_with_global_object() method.
Also tweak the naming of various CMake glue code existing around this.
To enable incremental movement towards the removal of DOM object
instance wrappers, this patch adds a NO_INSTANCE argument that can be
passed to libweb_js_wrapper().