The implementation only supports a single iovec for now.
Some might say having more than one iovec is the main point of
recvmsg() and sendmsg(), but I'm interested in the control message
bits.
With this, `ue /bin/ntpquery` can be used to test sendto() and
recvfrom() in ue. (It eventually hits an unimplemented FILD_RM64,
but not before doing emulated network i/o and printing response
details.)
This is racy in userspace and non-racy in kernelspace so let's keep
it in kernelspace.
The behavior change where CLOEXEC is preserved when dup2() is called
with (old_fd == new_fd) was good though, let's keep that.
The emulator will now register signal handlers for all possible signals
and act as a translation layer between the kernel and the emulated
process.
To get an accurate simulation of signal handling, we duplicate the same
trampoline mechanism used by the kernel's signal delivery system, and
also use the "sigreturn" syscall to return from a signal handler.
Signal masking is not fully implemented yet, but this is pretty cool!
This virtual syscall works by exec'ing the UserspaceEmulator itself,
with the emulated program's provided arguments as the arguments to the
new UserspaceEmulator instance.
This means that we "follow" exec'ed programs and emulate them as well.
In the future we might want to make this an opt-in (or opt-out, idk)
behavior, but for now it's what we do.
This is really quite cool, I think! :^)
Note that running a setuid program (e.g /bin/ping) in UE does not
actually run uid=0. You'll have to run UE itself as uid=0 if you want
to test programs that do setuid/setgid.
This patch introduces a "MallocTracer" to the UserspaceEmulator.
If this object is present on the Emulator, it can be notified whenever
the emulated program does a malloc() or free().
The notifications come in via a magic instruction sequence that we
embed in the LibC malloc() and free() functions. The sequence is:
"salc x2, push reg32 x2, pop reg32 x3"
The data about the malloc/free operation is in the three pushes.
We make sure the sequence is harmless when running natively.
Memory accesses on MmapRegion are then audited to see if they fall
inside a known-to-be-freed malloc chunk. If so, we complain loud
and red in the debugger output. :^)
This is very, very cool! :^)
It's also a whole lot slower than before, since now we're auditing
memory accesses against a new set of metadata. This will need to be
optimized (and running in this mode should be opt-in, perhaps even
a separate program, etc.)
Here goes mkdir(), unlink(), socket(), getsockopt(), fchmod()
bind(), connect(), listen(), select() and recvfrom().
They're not perfect but they seem to work. :^)
Here's the first time we get a taste of better information than the
real hardware can give us: unlike x86 CPUs, we can actually support
write-only memory, so now we do!
While this isn't immediately useful, it's still pretty cool. :^)
Ultimately we'll want to support passing some options to the emulator
as well, but for now just pass all arguments (except argv[0] of course)
through to the emulated process.
This is still not perfect, but slightly better than what we had before.
This patch adds a basic ELF program loader to the UserspaceEmulator and
creates MMU regions for each PT_LOAD header. (Note that we don't yet
respect the R/W/X flags etc.)
We also turn the SoftCPU into an X86::InstructionStream and give it an
EIP register so we can actually execute code by fetching memory through
our MMU abstraction.
This Emulator sub-object will keep track of all active memory regions
and handle memory read/write operations from the CPU.
A memory region is currently represented by a virtual Region object
that can implement arbitrary behavior by overriding read/write ops.
This introduces a new X86 CPU emulator for running SerenityOS userspace
programs in a virtualized interpreter environment.
The main goal is to be able to instrument memory accesses and catch
interesting bugs that are very hard to find otherwise. But before we
can do fancy things like that, we have to build a competent emulator
able to actually run programs.
This initial version is able to run a very small program that makes
some tiny syscalls, but nothing more.