Our API still specifies it as a double, but internally we communicate a
float to the rasterizer. Additionally, clamp the value to 0..1 as
described in the spec.
According to the OpenGL spec, invoking functions without an active
context results in undefined behavior. Since ScummVM seems to be the
only port having issues with our behavior, patch their code instead.
In its current state, ScummVM seems to invoke these methods just after
destroying the current GL context. According to the OpenGL spec:
"Issuing GL commands when the program does not have a current
context results in undefined behavior, up to and including program
termination."
Our old behavior was to deref a `nullptr`, which isn't that great. For
now, protect these two methods. If other ports seem to misbehave as
well, we can always expand the check to other methods.
These enums are used to indicate byte-alignment when reading from and
to textures. The `GL_UNPACK_ROW_LENGTH` value was reimplemented to
support overriding the source data row width.
This sets the length of a row for the image to be transferred. This
value is measured in pixels. When a rectangle with a width less than
this value is transferred the remaining pixels of this row are skipped.
Currently just sets the renderer option for what polygon mode we
want the rasterizer to draw in. GLQuake only uses `GL_FRONT_AND_BACK`
with `GL_FILL` )which implies both back and front facing triangles
are to be filled completely by the rasterizer), so keeping this as
a small stub is perfectly fine for now.
This is a very basic implementation of glGetfloatv. It will only give a
result when used with GL_MODELVIEW_MATRIX. In the future
we can update and extend it's functionality.
This is based mostly on Fabian "ryg" Giesen's 2011 blog series
"A trip through the Graphics Pipeline" and Scratchapixel's
"Rasterization: a Practical Implementation".
The rasterizer processes triangles in grid aligned 16x16 pixel blocks,
calculates barycentric coordinates and edge derivatives and interpolates
bilinearly across each block.
This will theoretically allow for better utilization of modern processor
features such as SMT and SIMD, as opposed to a classic scanline based
triangle rasterizer.
This serves as a starting point to get something on the screen.
In the future we might look into properly pipelining the main loop to
make the rasterizer more flexible, enabling us to enable/disable
certain features at the block rather than the pixel level.
This implements `glGetError` and correctly sets the state machine's
error macro (similar to LibC `errno`) when an invalid operation is
performed. This is reset on completion of a successful operation.
This currently (obviously) doesn't support any actual 3D hardware,
hence all calls are done via software rendering.
Note that any modern constructs such as shaders are unsupported,
as this driver only implements Fixed Function Pipeline functionality.
The library is split into a base GLContext interface and a software
based renderer implementation of said interface. The global glXXX
functions serve as an OpenGL compatible c-style interface to the
currently bound context instance.
Co-authored-by: Stephan Unverwerth <s.unverwerth@gmx.de>