Currently, integers are stored in LibSQL as 32-bit signed integers, even
if the provided type is unsigned. This resulted in a series of unchecked
unsigned-to-signed conversions, and prevented storing 64-bit values.
Further, mathematical operations were performed without similar checks,
and without checking for overflow.
This changes SQL::Value to behave like SQLite for INTEGER types. In
SQLite, the INTEGER type does not imply a size or signedness of the
underlying type. Instead, SQLite determines on-the-fly what type is
needed as values are created and updated.
To do so, the SQL::Value variant can now hold an i64 or u64 integer. If
a specific type is requested, invalid conversions are now explictly an
error (e.g. converting a stored -1 to a u64 will fail). When binary
mathematical operations are performed, we now try to coerce the RHS
value to a type that works with the LHS value, failing the operation if
that isn't possible. Any overflow or invalid operation (e.g. bitshifting
a 64-bit value by more than 64 bytes) is an error.
In the long run, this is obviously a bad way to handle version changes
to the SQL database files. We will want to migrate old databases to new
formats. Until we figure out a good way to do that, wipe old databases
so that we don't crash trying to read incompatible data.
Note that this still keeps the old behaviour of putting things in std by
default on serenity so the tools can be happy, but if USING_AK_GLOBALLY
is unset, AK behaves like a good citizen and doesn't try to put things
in the ::std namespace.
std::nothrow_t and its friends get to stay because I'm being told that
compilers assume things about them and I can't yeet them into a
different namespace...for now.
This generally seems like a better name, especially if we somehow also
need a better name for "read the entire buffer, but not the entire file"
somewhere down the line.
This is just used to key the socket fd for system server takeover. On
macOS, this file path has a space in it, which trips up the parsing as
it splits on spaces. That parsing should be fixed (probably shouldn't
rely on spaces as a delimter), but for now, we can change the key to
avoid spaces.
On Serenity, SQLServer is started by SystemServer. But on Lagom, it is
manually started by e.g. Ladybird when the application is started, and
killed when the application exits. This means every Ladybird process
starts its own SQLServer, which defeats the purpose of SQLServer acting
as the single process interacting with the database files.
This patch will allow SQLClient to start up a single SQLServer instance,
first checking if one already exists. If it does exist, SQLClient will
simply connect to SQLServer's socket. If it does not exist, SQLClient
will launch SQLServer much like SystemServer would (with a local socket
file, etc.).
The child SQLServer process is double-forked; the grandchild process
becomes the SQLServer process, which the middle child process simply
exits to "detach" the grandchild process from the SQLClient process.
The sql REPL had the created/updated rows swapped by mistake. Also make
sure SQLServer fills in the correct value depending on the executed
command, and that the DELETE command indicates the rows it deleted.
We've been sending the values converted to a string, but now that the
Value type is transferrable over IPC, send the values themselves. Any
client that wants the value as a string may do so easily, whereas this
will allow less trivial clients to avoid string parsing.
Currently, when clients connect to SQL server, we inform them of any
errors opening the database via an asynchronous IPC. But we already know
about these errors before returning from the connect() IPC, so this
roundabout propagation is a bit unnecessary. Now if we fail to open the
database, we will simply not send back a valid connection ID.
Disconnect has a similar story. Rather than disconnecting and invoking
an asynchronous IPC to inform the client of the disconnect, make the
disconnect() IPC synchronous (because all it does is remove the database
from the map of open databases). Further, the only user of this command
is the SQL REPL when it wants to connect to a different database, so it
makes sense to block it. This did require moving a bit of logic around
in the REPL to accommodate this change.
In order to execute a prepared statement multiple times, and track each
execution's results, clients will need to be provided an execution ID.
This will create a monotonically increasing ID each time a prepared
statement is executed for this purpose.
When storing IDs and sending values over IPC, this changes SQLServer to:
1. Stop using -1 as a nominal "bad" ID. Store the IDs as unsigned, and
use Optional in the one place that the IPC needs to indicate an ID
was not allocated.
2. Let LibIPC encode/decode enumerations (SQLErrorCode) on our behalf.
3. Use size_t for array sizes.
This partially implements SQLite's bind-parameter expression to support
indicating placeholder values in a SQL statement. For example:
INSERT INTO table VALUES (42, ?);
In the above statement, the '?' identifier is a placeholder. This will
allow clients to compile statements a single time while running those
statements any number of times with different placeholder values.
Further, this will help mitigate SQL injection attacks.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Database::get_table currently either returns a RefPtr to an existing
table, a nullptr if the table doesn't exist, or an Error if some
internal error occured. Change this to return a NonnullRefPtr to an
exisiting table, or a SQL::Result with any error, including if the
table was not found. Callers can then handle that specific error code
if they want.
Returning a NonnullRefPtr will enable some further cleanup. This had
some fallout of needing to change some other methods' return types from
AK::ErrorOr to SQL::Result so that TRY may continue to be used.
Database::get_schema currently either returns a RefPtr to an existing
schema, a nullptr if the schema doesn't exist, or an Error if some
internal error occured. Change this to return a NonnullRefPtr to an
exisiting schema, or a SQL::Result with any error, including if the
schema was not found. Callers can then handle that specific error code
if they want.
Returning a NonnullRefPtr will enable some further cleanup. This had
some fallout of needing to change some other methods' return types from
AK::ErrorOr to SQL::Result so that TRY may continue to be used.
This ensures tables survive the database connection quitting. LibSQL
does not have transactional sessions yet, and probably won't for a
while, so let's just commit each modification as it comes.
After splitting a node, the new node was written to the same pointer as
the current node - probably a copy / paste error. This new code requires
a `.pointer() -> u32` to exist on the object to be serialized,
preventing this issue from happening again.
Fixes#15844.
C++20 can automatically synthesize `operator!=` from `operator==`, so
there is no point in writing such functions by hand if all they do is
call through to `operator==`.
This fixes a compile error with compilers that implement P2468 (Clang
16 currently). This paper restores the C++17 behavior that if both
`T::operator==(U)` and `T::operator!=(U)` exist, `U == T` won't be
rewritten in reverse to call `T::operator==(U)`. Removing `!=` operators
makes the rewriting possible again.
See https://reviews.llvm.org/D134529#3853062
This allows surrounding IO operations with TRY, making the code much
easier to reason about. This also replaces surrounding dbgln_if
statements to use "{:hex-dump}" instead of individually writing out
bytes.
Otherwise, we end up propagating those dependencies into targets that
link against that library, which creates unnecessary link-time
dependencies.
Also included are changes to readd now missing dependencies to tools
that actually need them.
Also do this for Shell.
This greatly simplifies the CMakeLists in Lagom, replacing many glob
patterns with a big list of libraries. There are still a few special
libraries that need some help to conform to the pattern, like LibELF and
LibWebView.
It also lets us remove essentially all of the Serenity or Lagom binary
directory detection logic from code generators, as now both projects
directories enter the generator logic from the same place.
Currently, the Value class is essentially a "pImpl" wrapper around the
ValueImpl hierarchy of classes. This is a bit difficult to follow and
reason about, as methods jump between the Value class and its impl
classes.
This changes the Variant held by Value to instead store the specified
types (String, int, etc.) directly. In doing so, the ValueImpl classes
are removed, and all methods are now just concise Variant visitors.
As part of this rewrite, support for the "array" type is dropped (or
rather, just not re-implemented) as it was unused. If it's needed in the
future, support can be re-added.
This does retain the ability for non-NULL types to store NULL values
(i.e. an empty Optional). I tried dropping this support as well, but it
is depended upon by the on-disk storage classes in non-trivial ways.