For example, in the following abbreviated test HTML:
<span>some text</span>
<script>println("whf")</script>
We would have to craft the expectation file to include the "some text"
segment, usually with some leading whitespace. This is a bit annoying,
and makes it difficult to manually craft expectation files.
So instead of comparing the expectation against the entire DOM inner
text, we now send the inner text of just the <pre> element containing
the test output when we invoke `internals.signalTextTestIsDone`.
The IPCs to request a page's text, layout tree, etc. are currently all
synchronous. This can result in a deadlock when WebContent also makes
a synchronous IPC call, as both ends will be waiting on each other.
This replaces the page info IPCs with a single, asynchronous IPC. This
new IPC is promise-based, much like our screenshot IPC.
UI event handlers currently return a boolean where false means the event
was cancelled by a script on the page, or otherwise dropped. It has been
a point of confusion for some time now, as it's not particularly clear
what should be returned in some special cases, or how the UI process
should handle the response.
This adds an enumeration with a few states that indicate exactly how the
WebContent process handled the event. This should remove all ambiguity,
and let us properly handle these states going forward.
There should be no behavior change with this patch. It's meant to only
introduce the enum, not change any of our decisions based on the result.
Choosing options from the `<select>` will load and display that style
sheet's source text, with some checks to make sure that the text that
just loaded is the one we currently want.
The UI is a little goofy when scrolling, as it uses `position: sticky`
which we don't implement yet. But that's just more motivation to
implement it! :^)
When working on the Inspector's HTML, it's often kind of tricky to debug
when an element is styled / positioned incorrectly. We don't have a way
to inspect the Inspector itself.
This adds a button to the Inspector to export its HTML/CSS/JS contents
to the downloads directory. This allows for more easily testing changes,
especially by opening the exported HTML in another browser's dev tools.
We will ultimately likely remove this button (or make it hidden) by the
time we are production-ready. But it's quite useful for now.
This call is used to inform the chrome that it should display a tooltip
now and avoid any hovering timers. This is used by <video> tags to
display the volume percentage when it is changed.
Now instead of sending the position in which the user entered the
tooltip area, send just the text, and let the chrome figure out how to
display it.
In the case of Qt, wait for 600 milliseconds of no mouse movement, then
display it under the mouse cursor.
This ensures that removing the last view from a WebContentClient will
close its associated process, assuming the WebContent process is not
hung. A more drastic measure will be needed to trigger forcefully
killing the process when it doesn't respond to this request.
This large commit also refactors LibWebView's process handling to use
a top-level Application class that uses a new WebView::Process class to
encapsulate the IPC-centric nature of each helper process.
This is mostly useful when some application-level logic needs to
iterate over all child processes. A more robust Process abstraction
would make this easier.
Using mmap-allocated memory for backing stores does not allow us to
benefit from using GPU-accelerated painting, because all the performance
increase we get is mostly negated by reading the GPU-allocated texture
back into RAM, so it can be shared with the browser process.
With IOSurface, we get a framebuffer that is both shareable between
processes and can be used as underlying memory for an OpenGL/Metal
texture.
This change does not yet benefit from using IOSurface and merely wraps
them into Gfx::Bitmap to be used by the CPU painter.
Allows WebContentClient to get pid of WebContent process right after
creation, so there is no window between forking and
notify_process_information() IPC response, when client doesn't know the
pid.
In the upcoming changes, we are going to switch macOS to using an
IOSurface for the backing store. This change will simplify the process
of sharing an IOSurface between processes because we already have the
MachPortServer running in the browser, and WebContent knows how to
locate the corresponding server.
This change allows the results of a find in page query to be reported
back to the user interface. Currently, the number of results found and
the current match index are reported.
Add factory functions to distinguish between when the owner of the File
wants to transfer ownership to the new IPC object (adopt) or to send a
copy of the same fd to the IPC peer (clone).
This behavior is more intuitive than the previous behavior. Previously,
an IPC::File would default to a shallow clone of the file descriptor,
only *actually* calling dup(2) for the fd when encoding or it into an
IPC MessageBuffer. Now the dup(2) for the fd is explicit in the clone_fd
factory function.
The previous name was extremely misleading, because the call is used for
pushing or replacing new session history entry on chrome side instead of
only changing URL.
It is going to be used to communicate whether it is possible to navigate
back or forward after session history stored on browser side will no
longer be used to driver navigation.
On Serenity, it's not trivial to extract the peer pid from a socket that
is created by SystemServer and then passed to a forked service process.
This patch adds an API to let the WebContent process notify the UI
directly, which makes the WebContent process show up in the Serenity
port's TaskManagerWidget. It seems that we will need to do something of
this sort in order to properly gather metrics on macOS as well, due to
the way that self mach ports work.
Let's not re-invoke the "page did start loading" IPC when the history
state is pushed/replaced. It's a bit misleading (the change does not
actually load the new URL), but also the chromes may do more work than
we want when we change the URL.
Instead, add a new IPC for the history object to invoke.
Most browsers have some indicator when audio is playing in a tab, which
makes it easier to find that tab and mute unwanted audio. This adds an
IPC to allow the Ladybird chromes to do something similar.
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
The Serenity chrome is the only chrome thus far that sends all input key
and mouse events to WebContent, including shortcut activations. This is
necessary for all chromes - we must give web pages a chance to intercept
input events before handling them ourselves.
To make this easier for other chromes, this patch moves Serenity's input
event handling to LibWebView. To do so, we add the Web::InputEvent type,
which models the event data we need within LibWeb. Chromes will then be
responsible for converting between this type and their native events.
This class lives in LibWeb (rather than LibWebView) because the plan is
to use it wholesale throughout the Page's event handler and across IPC.
Right now, we still send the individual fields of the event over IPC,
but it will be an easy refactor to send the event itself. We just can't
do this until all chromes have been ported to this event queueing.
Also note that we now only handle key input events back in the chrome.
WebContent handles all mouse events that it possibly can. If it was not
able to handle a mouse event, there's nothing for the chrome to do (i.e.
there is no clicking, scrolling, etc. the chrome is able to do if the
WebContent couldn't).
We had previous implemented some plumbing for file input elements in
commit 636602a54e.
This implements the return path for chromes to inform WebContent of the
file(s) the user selected. This patch includes a dummy implementation
for headless-browser to enable testing.
Attribute values may contain HTML, and may contain invalid HTML at that.
If the latter occurs, let's not generate invalid Inspector HTML when we
embed the attribute values as data attributes. Instead, cache the values
in the InspectorClient, and embed just a lookup index into the HTML.
This also nicely reduces the size of the generated HTML. The Inspector
on https://github.com/SerenityOS/serenity reduces from 2.3MB to 1.9MB
(about 318KB, or 13.8%).
The IPC layer between chromes and LibWeb now understands that multiple
top level traversables can live in each WebContent process.
This largely mechanical change adds a billion page_id/page_index
arguments to make sure that pages that end up opening new WebViews
through mechanisms like window.open() still work properly with those
extra windows.
Instead of spawning these processes from the WebContent process, we now
create them in the Browser chrome.
Part 1/N of "all processes are owned by the chrome".
These IPCs are different than other IPCs in that we can't just set up a
callback function to be invoked when WebContent sends us the screenshot
data. There are multiple places that would set that callback, and they
would step on each other's toes.
Instead, the screenshot APIs on ViewImplementation now return a Promise
which callers can interact with to receive the screenshot (or an error).
All DOM node mutation IPCs now invoke an async completion IPC after the
DOM is mutated. This allows consolidating where the Inspector updates
its view and the selected DOM node.
This also allows improving the response to removing a DOM node. We would
previously just select the <body> tag after removing a DOM node because
the Inspector client had no idea what node preceded the removed node.
Now the WebContent process can just indicate what that node is. So now
after removing a DOM node, we inspect either its previous sibling (if it
had one) or its parent.