/* * Copyright (c) 2020-2023, Linus Groh * Copyright (c) 2022-2024, Tim Flynn * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { GC_DEFINE_ALLOCATOR(Date); GC::Ref Date::create(Realm& realm, double date_value) { return realm.create(date_value, realm.intrinsics().date_prototype()); } Date::Date(double date_value, Object& prototype) : Object(ConstructWithPrototypeTag::Tag, prototype) , m_date_value(date_value) { } Date::~Date() = default; ErrorOr Date::iso_date_string() const { int year = year_from_time(m_date_value); StringBuilder builder; if (year < 0) builder.appendff("-{:06}", -year); else if (year > 9999) builder.appendff("+{:06}", year); else builder.appendff("{:04}", year); builder.append('-'); builder.appendff("{:02}", month_from_time(m_date_value) + 1); builder.append('-'); builder.appendff("{:02}", date_from_time(m_date_value)); builder.append('T'); builder.appendff("{:02}", hour_from_time(m_date_value)); builder.append(':'); builder.appendff("{:02}", min_from_time(m_date_value)); builder.append(':'); builder.appendff("{:02}", sec_from_time(m_date_value)); builder.append('.'); builder.appendff("{:03}", ms_from_time(m_date_value)); builder.append('Z'); return builder.to_string(); } // 21.4.1.3 Day ( t ), https://tc39.es/ecma262/#sec-day double day(double time_value) { // 1. Return 𝔽(floor(ℝ(t / msPerDay))). return floor(time_value / ms_per_day); } // 21.4.1.4 TimeWithinDay ( t ), https://tc39.es/ecma262/#sec-timewithinday double time_within_day(double time) { // 1. Return 𝔽(ℝ(t) modulo ℝ(msPerDay)). return modulo(time, ms_per_day); } // 21.4.1.5 DaysInYear ( y ), https://tc39.es/ecma262/#sec-daysinyear u16 days_in_year(i32 y) { // 1. Let ry be ℝ(y). auto ry = static_cast(y); // 2. If (ry modulo 400) = 0, return 366𝔽. if (modulo(ry, 400.0) == 0) return 366; // 3. If (ry modulo 100) = 0, return 365𝔽. if (modulo(ry, 100.0) == 0) return 365; // 4. If (ry modulo 4) = 0, return 366𝔽. if (modulo(ry, 4.0) == 0) return 366; // 5. Return 365𝔽. return 365; } // 21.4.1.6 DayFromYear ( y ), https://tc39.es/ecma262/#sec-dayfromyear double day_from_year(i32 y) { // 1. Let ry be ℝ(y). auto ry = static_cast(y); // 2. NOTE: In the following steps, each _numYearsN_ is the number of years divisible by N that occur between the // epoch and the start of year y. (The number is negative if y is before the epoch.) // 3. Let numYears1 be (ry - 1970). auto num_years_1 = ry - 1970; // 4. Let numYears4 be floor((ry - 1969) / 4). auto num_years_4 = floor((ry - 1969) / 4.0); // 5. Let numYears100 be floor((ry - 1901) / 100). auto num_years_100 = floor((ry - 1901) / 100.0); // 6. Let numYears400 be floor((ry - 1601) / 400). auto num_years_400 = floor((ry - 1601) / 400.0); // 7. Return 𝔽(365 × numYears1 + numYears4 - numYears100 + numYears400). return 365.0 * num_years_1 + num_years_4 - num_years_100 + num_years_400; } // 21.4.1.7 TimeFromYear ( y ), https://tc39.es/ecma262/#sec-timefromyear double time_from_year(i32 y) { // 1. Return msPerDay × DayFromYear(y). return ms_per_day * day_from_year(y); } // 21.4.1.8 YearFromTime ( t ), https://tc39.es/ecma262/#sec-yearfromtime i32 year_from_time(double t) { // 1. Return the largest integral Number y (closest to +∞) such that TimeFromYear(y) ≤ t. if (!Value(t).is_finite_number()) return NumericLimits::max(); // Approximation using average number of milliseconds per year. We might have to adjust this guess afterwards. auto year = static_cast(floor(t / (365.2425 * ms_per_day) + 1970)); auto year_t = time_from_year(year); if (year_t > t) year--; else if (year_t + days_in_year(year) * ms_per_day <= t) year++; return year; } // 21.4.1.9 DayWithinYear ( t ), https://tc39.es/ecma262/#sec-daywithinyear u16 day_within_year(double t) { if (!Value(t).is_finite_number()) return 0; // 1. Return Day(t) - DayFromYear(YearFromTime(t)). return static_cast(day(t) - day_from_year(year_from_time(t))); } // 21.4.1.10 InLeapYear ( t ), https://tc39.es/ecma262/#sec-inleapyear bool in_leap_year(double t) { // 1. If DaysInYear(YearFromTime(t)) is 366𝔽, return 1𝔽; else return +0𝔽. return days_in_year(year_from_time(t)) == 366; } // 21.4.1.11 MonthFromTime ( t ), https://tc39.es/ecma262/#sec-monthfromtime u8 month_from_time(double t) { // 1. Let inLeapYear be InLeapYear(t). auto in_leap_year = static_cast(JS::in_leap_year(t)); // 2. Let dayWithinYear be DayWithinYear(t). auto day_within_year = JS::day_within_year(t); // 3. If dayWithinYear < 31𝔽, return +0𝔽. if (day_within_year < 31) return 0; // 4. If dayWithinYear < 59𝔽 + inLeapYear, return 1𝔽. if (day_within_year < (59 + in_leap_year)) return 1; // 5. If dayWithinYear < 90𝔽 + inLeapYear, return 2𝔽. if (day_within_year < (90 + in_leap_year)) return 2; // 6. If dayWithinYear < 120𝔽 + inLeapYear, return 3𝔽. if (day_within_year < (120 + in_leap_year)) return 3; // 7. If dayWithinYear < 151𝔽 + inLeapYear, return 4𝔽. if (day_within_year < (151 + in_leap_year)) return 4; // 8. If dayWithinYear < 181𝔽 + inLeapYear, return 5𝔽. if (day_within_year < (181 + in_leap_year)) return 5; // 9. If dayWithinYear < 212𝔽 + inLeapYear, return 6𝔽. if (day_within_year < (212 + in_leap_year)) return 6; // 10. If dayWithinYear < 243𝔽 + inLeapYear, return 7𝔽. if (day_within_year < (243 + in_leap_year)) return 7; // 11. If dayWithinYear < 273𝔽 + inLeapYear, return 8𝔽. if (day_within_year < (273 + in_leap_year)) return 8; // 12. If dayWithinYear < 304𝔽 + inLeapYear, return 9𝔽. if (day_within_year < (304 + in_leap_year)) return 9; // 13. If dayWithinYear < 334𝔽 + inLeapYear, return 10𝔽. if (day_within_year < (334 + in_leap_year)) return 10; // 14. Assert: dayWithinYear < 365𝔽 + inLeapYear. VERIFY(day_within_year < (365 + in_leap_year)); // 15. Return 11𝔽. return 11; } // 21.4.1.12 DateFromTime ( t ), https://tc39.es/ecma262/#sec-datefromtime u8 date_from_time(double t) { // 1. Let inLeapYear be InLeapYear(t). auto in_leap_year = static_cast(JS::in_leap_year(t)); // 2. Let dayWithinYear be DayWithinYear(t). auto day_within_year = JS::day_within_year(t); // 3. Let month be MonthFromTime(t). auto month = month_from_time(t); // 4. If month is +0𝔽, return dayWithinYear + 1𝔽. if (month == 0) return day_within_year + 1; // 5. If month is 1𝔽, return dayWithinYear - 30𝔽. if (month == 1) return day_within_year - 30; // 6. If month is 2𝔽, return dayWithinYear - 58𝔽 - inLeapYear. if (month == 2) return day_within_year - 58 - in_leap_year; // 7. If month is 3𝔽, return dayWithinYear - 89𝔽 - inLeapYear. if (month == 3) return day_within_year - 89 - in_leap_year; // 8. If month is 4𝔽, return dayWithinYear - 119𝔽 - inLeapYear. if (month == 4) return day_within_year - 119 - in_leap_year; // 9. If month is 5𝔽, return dayWithinYear - 150𝔽 - inLeapYear. if (month == 5) return day_within_year - 150 - in_leap_year; // 10. If month is 6𝔽, return dayWithinYear - 180𝔽 - inLeapYear. if (month == 6) return day_within_year - 180 - in_leap_year; // 11. If month is 7𝔽, return dayWithinYear - 211𝔽 - inLeapYear. if (month == 7) return day_within_year - 211 - in_leap_year; // 12. If month is 8𝔽, return dayWithinYear - 242𝔽 - inLeapYear. if (month == 8) return day_within_year - 242 - in_leap_year; // 13. If month is 9𝔽, return dayWithinYear - 272𝔽 - inLeapYear. if (month == 9) return day_within_year - 272 - in_leap_year; // 14. If month is 10𝔽, return dayWithinYear - 303𝔽 - inLeapYear. if (month == 10) return day_within_year - 303 - in_leap_year; // 15. Assert: month is 11𝔽. VERIFY(month == 11); // 16. Return dayWithinYear - 333𝔽 - inLeapYear. return day_within_year - 333 - in_leap_year; } // 21.4.1.13 WeekDay ( t ), https://tc39.es/ecma262/#sec-weekday u8 week_day(double t) { if (!Value(t).is_finite_number()) return 0; // 1. Return 𝔽(ℝ(Day(t) + 4𝔽) modulo 7). return static_cast(modulo(day(t) + 4, 7)); } // 21.4.1.14 HourFromTime ( t ), https://tc39.es/ecma262/#sec-hourfromtime u8 hour_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 1. Return 𝔽(floor(ℝ(t / msPerHour)) modulo HoursPerDay). return static_cast(modulo(floor(t / ms_per_hour), hours_per_day)); } // 21.4.1.15 MinFromTime ( t ), https://tc39.es/ecma262/#sec-minfromtime u8 min_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 1. Return 𝔽(floor(ℝ(t / msPerMinute)) modulo MinutesPerHour). return static_cast(modulo(floor(t / ms_per_minute), minutes_per_hour)); } // 21.4.1.16 SecFromTime ( t ), https://tc39.es/ecma262/#sec-secfromtime u8 sec_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 1. Return 𝔽(floor(ℝ(t / msPerSecond)) modulo SecondsPerMinute). return static_cast(modulo(floor(t / ms_per_second), seconds_per_minute)); } // 21.4.1.17 msFromTime ( t ), https://tc39.es/ecma262/#sec-msfromtime u16 ms_from_time(double t) { if (!Value(t).is_finite_number()) return 0; // 1. Return 𝔽(ℝ(t) modulo ℝ(msPerSecond)). return static_cast(modulo(t, ms_per_second)); } // 21.4.1.18 GetUTCEpochNanoseconds ( year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getutcepochnanoseconds // 14.5.1 GetUTCEpochNanoseconds ( isoDateTime ), https://tc39.es/proposal-temporal/#sec-getutcepochnanoseconds Crypto::SignedBigInteger get_utc_epoch_nanoseconds(Temporal::ISODateTime const& iso_date_time) { // 1. Let date be MakeDay(𝔽(isoDateTime.[[ISODate]].[[Year]]), 𝔽(isoDateTime.[[ISODate]].[[Month]] - 1), 𝔽(isoDateTime.[[ISODate]].[[Day]])). auto date = make_day(iso_date_time.iso_date.year, iso_date_time.iso_date.month - 1, iso_date_time.iso_date.day); // 2. Let time be MakeTime(𝔽(isoDateTime.[[Time]].[[Hour]]), 𝔽(isoDateTime.[[Time]].[[Minute]]), 𝔽(isoDateTime.[[Time]].[[Second]]), 𝔽(isoDateTime.[[Time]].[[Millisecond]])). auto time = make_time(iso_date_time.time.hour, iso_date_time.time.minute, iso_date_time.time.second, iso_date_time.time.millisecond); // 3. Let ms be MakeDate(date, time). auto ms = make_date(date, time); // 4. Assert: ms is an integral Number. VERIFY(ms == trunc(ms)); // 5. Return ℤ(ℝ(ms) × 10**6 + isoDateTime.[[Time]].[[Microsecond]] × 10**3 + isoDateTime.[[Time]].[[Nanosecond]]). auto result = Crypto::SignedBigInteger { ms }.multiplied_by(Temporal::NANOSECONDS_PER_MILLISECOND); result = result.plus(Crypto::SignedBigInteger { static_cast(iso_date_time.time.microsecond) }.multiplied_by(Temporal::NANOSECONDS_PER_MICROSECOND)); result = result.plus(Crypto::SignedBigInteger { static_cast(iso_date_time.time.nanosecond) }); return result; } static i64 clip_bigint_to_sane_time(Crypto::SignedBigInteger const& value) { static Crypto::SignedBigInteger const min_bigint { NumericLimits::min() }; static Crypto::SignedBigInteger const max_bigint { NumericLimits::max() }; // The provided epoch (nano)seconds value is potentially out of range for AK::Duration and subsequently // get_time_zone_offset(). We can safely assume that the TZDB has no useful information that far // into the past and future anyway, so clamp it to the i64 range. if (value < min_bigint) return NumericLimits::min(); if (value > max_bigint) return NumericLimits::max(); // FIXME: Can we do this without string conversion? return value.to_base_deprecated(10).to_number().value(); } static i64 clip_double_to_sane_time(double value) { static constexpr auto min_double = static_cast(NumericLimits::min()); static constexpr auto max_double = static_cast(NumericLimits::max()); // The provided epoch millseconds value is potentially out of range for AK::Duration and subsequently // get_time_zone_offset(). We can safely assume that the TZDB has no useful information that far // into the past and future anyway, so clamp it to the i64 range. if (value < min_double) return NumericLimits::min(); if (value > max_double) return NumericLimits::max(); return static_cast(value); } // 21.4.1.20 GetNamedTimeZoneEpochNanoseconds ( timeZoneIdentifier, year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getnamedtimezoneepochnanoseconds // 14.6.3 GetNamedTimeZoneEpochNanoseconds ( timeZoneIdentifier, isoDateTime ), https://tc39.es/proposal-temporal/#sec-getnamedtimezoneepochnanoseconds Vector get_named_time_zone_epoch_nanoseconds(StringView time_zone_identifier, Temporal::ISODateTime const& iso_date_time) { auto local_nanoseconds = get_utc_epoch_nanoseconds(iso_date_time); auto local_time = UnixDateTime::from_nanoseconds_since_epoch(clip_bigint_to_sane_time(local_nanoseconds)); // FIXME: LibUnicode does not behave exactly as the spec expects. It does not consider repeated or skipped time points. auto offset = Unicode::time_zone_offset(time_zone_identifier, local_time); // Can only fail if the time zone identifier is invalid, which cannot be the case here. VERIFY(offset.has_value()); return { local_nanoseconds.minus(Crypto::SignedBigInteger { offset->offset.to_nanoseconds() }) }; } // 21.4.1.21 GetNamedTimeZoneOffsetNanoseconds ( timeZoneIdentifier, epochNanoseconds ), https://tc39.es/ecma262/#sec-getnamedtimezoneoffsetnanoseconds Unicode::TimeZoneOffset get_named_time_zone_offset_nanoseconds(StringView time_zone_identifier, Crypto::SignedBigInteger const& epoch_nanoseconds) { // Since UnixDateTime::from_seconds_since_epoch() and UnixDateTime::from_nanoseconds_since_epoch() both take an i64, converting to // seconds first gives us a greater range. The TZDB doesn't have sub-second offsets. auto seconds = epoch_nanoseconds.divided_by(Temporal::NANOSECONDS_PER_SECOND).quotient; auto time = UnixDateTime::from_seconds_since_epoch(clip_bigint_to_sane_time(seconds)); auto offset = Unicode::time_zone_offset(time_zone_identifier, time); VERIFY(offset.has_value()); return offset.release_value(); } // 21.4.1.21 GetNamedTimeZoneOffsetNanoseconds ( timeZoneIdentifier, epochNanoseconds ), https://tc39.es/ecma262/#sec-getnamedtimezoneoffsetnanoseconds // OPTIMIZATION: This overload is provided to allow callers to avoid BigInt construction if they do not need infinitely precise nanosecond resolution. Unicode::TimeZoneOffset get_named_time_zone_offset_milliseconds(StringView time_zone_identifier, double epoch_milliseconds) { auto seconds = epoch_milliseconds / 1000.0; auto time = UnixDateTime::from_seconds_since_epoch(clip_double_to_sane_time(seconds)); auto offset = Unicode::time_zone_offset(time_zone_identifier, time); VERIFY(offset.has_value()); return offset.release_value(); } static Optional cached_system_time_zone_identifier; // 21.4.1.24 SystemTimeZoneIdentifier ( ), https://tc39.es/ecma262/#sec-systemtimezoneidentifier String system_time_zone_identifier() { // OPTIMIZATION: We cache the system time zone to avoid the expensive lookups below. if (cached_system_time_zone_identifier.has_value()) return *cached_system_time_zone_identifier; // 1. If the implementation only supports the UTC time zone, return "UTC". // 2. Let systemTimeZoneString be the String representing the host environment's current time zone, either a primary // time zone identifier or an offset time zone identifier. auto system_time_zone_string = Unicode::current_time_zone(); if (!is_offset_time_zone_identifier(system_time_zone_string)) { auto time_zone_identifier = Intl::get_available_named_time_zone_identifier(system_time_zone_string); if (!time_zone_identifier.has_value()) return "UTC"_string; system_time_zone_string = time_zone_identifier->primary_identifier; } // 3. Return systemTimeZoneString. cached_system_time_zone_identifier = move(system_time_zone_string); return *cached_system_time_zone_identifier; } void clear_system_time_zone_cache() { cached_system_time_zone_identifier.clear(); } // 21.4.1.25 LocalTime ( t ), https://tc39.es/ecma262/#sec-localtime // 14.5.6 LocalTime ( t ), https://tc39.es/proposal-temporal/#sec-localtime double local_time(double time) { // 1. Let systemTimeZoneIdentifier be SystemTimeZoneIdentifier(). auto system_time_zone_identifier = JS::system_time_zone_identifier(); // 2. Let parseResult be ! ParseTimeZoneIdentifier(systemTimeZoneIdentifier). auto parse_result = Temporal::parse_time_zone_identifier(system_time_zone_identifier); double offset_nanoseconds { 0 }; // 3. If parseResult.[[OffsetMinutes]] is not EMPTY, then if (parse_result.offset_minutes.has_value()) { // a. Let offsetNs be parseResult.[[OffsetMinutes]] × (60 × 10**9). offset_nanoseconds = static_cast(*parse_result.offset_minutes) * 60'000'000'000; } // 4. Else, else { // a. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier, ℤ(ℝ(t) × 10^6)). auto offset = get_named_time_zone_offset_milliseconds(system_time_zone_identifier, time); offset_nanoseconds = static_cast(offset.offset.to_nanoseconds()); } // 5. Let offsetMs be truncate(offsetNs / 10^6). auto offset_milliseconds = trunc(offset_nanoseconds / 1e6); // 6. Return t + 𝔽(offsetMs). return time + offset_milliseconds; } // 21.4.1.26 UTC ( t ), https://tc39.es/ecma262/#sec-utc-t // 14.5.7 UTC ( t ), https://tc39.es/proposal-temporal/#sec-utc-t double utc_time(double time) { // 1. Let systemTimeZoneIdentifier be SystemTimeZoneIdentifier(). auto system_time_zone_identifier = JS::system_time_zone_identifier(); // 2. Let parseResult be ! ParseTimeZoneIdentifier(systemTimeZoneIdentifier). auto parse_result = Temporal::parse_time_zone_identifier(system_time_zone_identifier); double offset_nanoseconds { 0 }; // 3. If parseResult.[[OffsetMinutes]] is not EMPTY, then if (parse_result.offset_minutes.has_value()) { // a. Let offsetNs be parseResult.[[OffsetMinutes]] × (60 × 10**9). offset_nanoseconds = static_cast(*parse_result.offset_minutes) * 60'000'000'000; } // 4. Else, else { // a. Let isoDateTime be TimeValueToISODateTimeRecord(t). auto iso_date_time = Temporal::time_value_to_iso_date_time_record(time); // b. Let possibleInstants be GetNamedTimeZoneEpochNanoseconds(systemTimeZoneIdentifier, isoDateTime). auto possible_instants = get_named_time_zone_epoch_nanoseconds(system_time_zone_identifier, iso_date_time); // c. NOTE: The following steps ensure that when t represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transition (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change), t is interpreted using the time zone offset before the transition. Crypto::SignedBigInteger disambiguated_instant; // d. If possibleInstants is not empty, then if (!possible_instants.is_empty()) { // i. Let disambiguatedInstant be possibleInstants[0]. disambiguated_instant = move(possible_instants.first()); } // e. Else, else { // i. NOTE: t represents a local time skipped at a positive time zone transition (e.g. due to daylight saving time starting or a time zone rule change increasing the UTC offset). // ii. Let possibleInstantsBefore be GetNamedTimeZoneEpochNanoseconds(systemTimeZoneIdentifier, TimeValueToISODateTimeRecord(tBefore)), where tBefore is the largest integral Number < t for which possibleInstantsBefore is not empty (i.e., tBefore represents the last local time before the transition). // iii. Let disambiguatedInstant be the last element of possibleInstantsBefore. // FIXME: This branch currently cannot be reached with our implementation, because LibUnicode does not handle skipped time points. // When GetNamedTimeZoneEpochNanoseconds is updated to use a LibUnicode API which does handle them, implement these steps. VERIFY_NOT_REACHED(); } // f. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier, disambiguatedInstant). auto offset = get_named_time_zone_offset_nanoseconds(system_time_zone_identifier, disambiguated_instant); offset_nanoseconds = static_cast(offset.offset.to_nanoseconds()); } // 5. Let offsetMs be truncate(offsetNs / 10^6). auto offset_milliseconds = trunc(offset_nanoseconds / 1e6); // 6. Return t - 𝔽(offsetMs). return time - offset_milliseconds; } // 21.4.1.27 MakeTime ( hour, min, sec, ms ), https://tc39.es/ecma262/#sec-maketime double make_time(double hour, double min, double sec, double ms) { // 1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN. if (!isfinite(hour) || !isfinite(min) || !isfinite(sec) || !isfinite(ms)) return NAN; // 2. Let h be 𝔽(! ToIntegerOrInfinity(hour)). auto h = to_integer_or_infinity(hour); // 3. Let m be 𝔽(! ToIntegerOrInfinity(min)). auto m = to_integer_or_infinity(min); // 4. Let s be 𝔽(! ToIntegerOrInfinity(sec)). auto s = to_integer_or_infinity(sec); // 5. Let milli be 𝔽(! ToIntegerOrInfinity(ms)). auto milli = to_integer_or_infinity(ms); // 6. Let t be ((h * msPerHour + m * msPerMinute) + s * msPerSecond) + milli, performing the arithmetic according to IEEE 754-2019 rules (that is, as if using the ECMAScript operators * and +). // NOTE: C++ arithmetic abides by IEEE 754 rules auto t = ((h * ms_per_hour + m * ms_per_minute) + s * ms_per_second) + milli; // 7. Return t. return t; } // 21.4.1.28 MakeDay ( year, month, date ), https://tc39.es/ecma262/#sec-makeday double make_day(double year, double month, double date) { // 1. If year is not finite or month is not finite or date is not finite, return NaN. if (!isfinite(year) || !isfinite(month) || !isfinite(date)) return NAN; // 2. Let y be 𝔽(! ToIntegerOrInfinity(year)). auto y = to_integer_or_infinity(year); // 3. Let m be 𝔽(! ToIntegerOrInfinity(month)). auto m = to_integer_or_infinity(month); // 4. Let dt be 𝔽(! ToIntegerOrInfinity(date)). auto dt = to_integer_or_infinity(date); // 5. Let ym be y + 𝔽(floor(ℝ(m) / 12)). auto ym = y + floor(m / 12); // 6. If ym is not finite, return NaN. if (!isfinite(ym)) return NAN; // 7. Let mn be 𝔽(ℝ(m) modulo 12). auto mn = modulo(m, 12); // 8. Find a finite time value t such that YearFromTime(t) is ym and MonthFromTime(t) is mn and DateFromTime(t) is 1𝔽; but if this is not possible (because some argument is out of range), return NaN. if (!AK::is_within_range(ym) || !AK::is_within_range(mn + 1)) return NAN; auto t = days_since_epoch(static_cast(ym), static_cast(mn) + 1, 1) * ms_per_day; // 9. Return Day(t) + dt - 1𝔽. return day(static_cast(t)) + dt - 1; } // 21.4.1.29 MakeDate ( day, time ), https://tc39.es/ecma262/#sec-makedate double make_date(double day, double time) { // 1. If day is not finite or time is not finite, return NaN. if (!isfinite(day) || !isfinite(time)) return NAN; // 2. Let tv be day × msPerDay + time. auto tv = day * ms_per_day + time; // 3. If tv is not finite, return NaN. if (!isfinite(tv)) return NAN; // 4. Return tv. return tv; } // 21.4.1.31 TimeClip ( time ), https://tc39.es/ecma262/#sec-timeclip double time_clip(double time) { // 1. If time is not finite, return NaN. if (!isfinite(time)) return NAN; // 2. If abs(ℝ(time)) > 8.64 × 10^15, return NaN. if (fabs(time) > 8.64E15) return NAN; // 3. Return 𝔽(! ToIntegerOrInfinity(time)). return to_integer_or_infinity(time); } // 21.4.1.33.1 IsTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-istimezoneoffsetstring // 14.5.10 IsOffsetTimeZoneIdentifier ( offsetString ), https://tc39.es/proposal-temporal/#sec-isoffsettimezoneidentifier bool is_offset_time_zone_identifier(StringView offset_string) { // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset[~SubMinutePrecision]). auto parse_result = Temporal::parse_utc_offset(offset_string, Temporal::SubMinutePrecision::No); // 2. If parseResult is a List of errors, return false. // 3. Return true. return parse_result.has_value(); } // 21.4.1.33.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring // 14.5.11 ParseDateTimeUTCOffset ( offsetString ), https://tc39.es/proposal-temporal/#sec-parsedatetimeutcoffset ThrowCompletionOr parse_date_time_utc_offset(VM& vm, StringView offset_string) { // 1. Let parseResult be ParseText(offsetString, UTCOffset[+SubMinutePrecision]). auto parse_result = Temporal::parse_utc_offset(offset_string, Temporal::SubMinutePrecision::Yes); // 2. If parseResult is a List of errors, throw a RangeError exception. if (!parse_result.has_value()) return vm.throw_completion(ErrorType::TemporalInvalidTimeZoneString, offset_string); return parse_date_time_utc_offset(*parse_result); } // 21.4.1.33.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring // 14.5.11 ParseDateTimeUTCOffset ( offsetString ), https://tc39.es/proposal-temporal/#sec-parsedatetimeutcoffset double parse_date_time_utc_offset(StringView offset_string) { // OPTIMIZATION: Some callers can assume that parsing will succeed. // 1. Let parseResult be ParseText(offsetString, UTCOffset[+SubMinutePrecision]). auto parse_result = Temporal::parse_utc_offset(offset_string, Temporal::SubMinutePrecision::Yes); VERIFY(parse_result.has_value()); return parse_date_time_utc_offset(*parse_result); } // 21.4.1.33.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring // 14.5.11 ParseDateTimeUTCOffset ( offsetString ), https://tc39.es/proposal-temporal/#sec-parsedatetimeutcoffset double parse_date_time_utc_offset(Temporal::TimeZoneOffset const& parse_result) { // OPTIMIZATION: Some callers will have already parsed and validated the time zone identifier. // 3. Assert: parseResult contains a ASCIISign Parse Node. VERIFY(parse_result.sign.has_value()); // 4. Let parsedSign be the source text matched by the ASCIISign Parse Node contained within parseResult. // 5. If parsedSign is the single code point U+002D (HYPHEN-MINUS), then // a. Let sign be -1. // 6. Else, // a. Let sign be 1. auto sign = parse_result.sign == '-' ? -1 : 1; // 7. NOTE: Applications of StringToNumber below do not lose precision, since each of the parsed values is guaranteed // to be a sufficiently short string of decimal digits. // 8. Assert: parseResult contains an Hour Parse Node. VERIFY(parse_result.hours.has_value()); // 9. Let parsedHours be the source text matched by the Hour Parse Node contained within parseResult. // 10. Let hours be ℝ(StringToNumber(CodePointsToString(parsedHours))). auto hours = parse_result.hours->to_number().value(); // 11. If parseResult does not contain a MinuteSecond Parse Node, then // a. Let minutes be 0. // 12. Else, // a. Let parsedMinutes be the source text matched by the first MinuteSecond Parse Node contained within parseResult. // b. Let minutes be ℝ(StringToNumber(CodePointsToString(parsedMinutes))). double minutes = parse_result.minutes.has_value() ? parse_result.minutes->to_number().value() : 0; // 13. If parseResult does not contain two MinuteSecond Parse Nodes, then // a. Let seconds be 0. // 14. Else, // a. Let parsedSeconds be the source text matched by the second secondSecond Parse Node contained within parseResult. // b. Let seconds be ℝ(StringToNumber(CodePointsToString(parsedSeconds))). double seconds = parse_result.seconds.has_value() ? parse_result.seconds->to_number().value() : 0; double nanoseconds = 0; // 15. If parseResult does not contain a TemporalDecimalFraction Parse Node, then if (!parse_result.fraction.has_value()) { // a. Let nanoseconds be 0. nanoseconds = 0; } // 16. Else, else { // a. Let parsedFraction be the source text matched by the TemporalDecimalFraction Parse Node contained within parseResult. auto parsed_fraction = *parse_result.fraction; // b. Let fraction be the string-concatenation of CodePointsToString(parsedFraction) and "000000000". auto fraction = ByteString::formatted("{}000000000", parsed_fraction); // c. Let nanosecondsString be the substring of fraction from 1 to 10. auto nanoseconds_string = fraction.substring_view(1, 9); // d. Let nanoseconds be ℝ(StringToNumber(nanosecondsString)). nanoseconds = string_to_number(nanoseconds_string); } // 17. Return sign × (((hours × 60 + minutes) × 60 + seconds) × 10^9 + nanoseconds). // NOTE: Using scientific notation (1e9) ensures the result of this expression is a double, // which is important - otherwise it's all integers and the result overflows! return sign * (((hours * 60 + minutes) * 60 + seconds) * 1e9 + nanoseconds); } }