/* * Copyright (c) 2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Emulator.h" #include "SoftCPU.h" #include #include #include #include #include #include namespace UserspaceEmulator { static constexpr u32 stack_location = 0x10000000; static constexpr size_t stack_size = 64 * KB; class SimpleRegion final : public SoftMMU::Region { public: SimpleRegion(u32 base, u32 size) : Region(base, size) { m_data = (u8*)calloc(1, size); } ~SimpleRegion() { free(m_data); } virtual u8 read8(u32 offset) override { ASSERT(offset < size()); return *reinterpret_cast(m_data + offset); } virtual u16 read16(u32 offset) override { ASSERT(offset + 1 < size()); return *reinterpret_cast(m_data + offset); } virtual u32 read32(u32 offset) override { ASSERT(offset + 3 < size()); return *reinterpret_cast(m_data + offset); } virtual void write8(u32 offset, u8 value) override { ASSERT(offset < size()); *reinterpret_cast(m_data + offset) = value; } virtual void write16(u32 offset, u16 value) override { ASSERT(offset + 1 < size()); *reinterpret_cast(m_data + offset) = value; } virtual void write32(u32 offset, u32 value) override { ASSERT(offset + 3 < size()); *reinterpret_cast(m_data + offset) = value; } u8* data() { return m_data; } private: u8* m_data { nullptr }; }; Emulator::Emulator(const String& executable_path, NonnullRefPtr elf) : m_elf(move(elf)) , m_cpu(*this) , m_executable_path(executable_path) { setup_stack(); } void Emulator::setup_stack() { auto stack_region = make(stack_location, stack_size); m_mmu.add_region(move(stack_region)); m_cpu.set_esp(stack_location + stack_size); m_cpu.push_string(LexicalPath(m_executable_path).basename()); u32 argv0 = m_cpu.esp(); m_cpu.push32(0); // char** envp = { nullptr } u32 envp = m_cpu.esp(); m_cpu.push32(0); // char** argv = { argv0, nullptr } m_cpu.push32(argv0); u32 argv = m_cpu.esp(); m_cpu.push32(0); // (alignment) u32 argc = 1; m_cpu.push32(envp); m_cpu.push32(argv); m_cpu.push32(argc); m_cpu.push32(0); // (alignment) } bool Emulator::load_elf() { m_elf->image().for_each_program_header([&](const ELF::Image::ProgramHeader& program_header) { if (program_header.type() == PT_LOAD) { auto region = make(program_header.vaddr().get(), program_header.size_in_memory()); memcpy(region->data(), program_header.raw_data(), program_header.size_in_image()); mmu().add_region(move(region)); return; } if (program_header.type() == PT_TLS) { auto tcb_region = make(0x20000000, program_header.size_in_memory()); memcpy(tcb_region->data(), program_header.raw_data(), program_header.size_in_image()); auto tls_region = make(0, 4); tls_region->write32(0, tcb_region->base() + 8); mmu().add_region(move(tcb_region)); mmu().set_tls_region(move(tls_region)); return; } }); m_cpu.set_eip(m_elf->image().entry().get()); return true; } class ELFSymbolProvider final : public X86::SymbolProvider { public: ELFSymbolProvider(ELF::Loader& loader) : m_loader(loader) { } virtual String symbolicate(FlatPtr address, u32* offset = nullptr) const { return m_loader.symbolicate(address, offset); } private: ELF::Loader& m_loader; }; int Emulator::exec() { ELFSymbolProvider symbol_provider(*m_elf); while (!m_shutdown) { auto base_eip = m_cpu.eip(); auto insn = X86::Instruction::from_stream(m_cpu, true, true); out() << (const void*)base_eip << " \033[33;1m" << insn.to_string(base_eip, &symbol_provider) << "\033[0m"; (m_cpu.*insn.handler())(insn); m_cpu.dump(); } return m_exit_status; } void Emulator::dump_backtrace() { u32 offset = 0; String symbol = m_elf->symbolicate(m_cpu.eip(), &offset); printf("> %#08x %s +%#x\n", m_cpu.eip(), symbol.characters(), offset); u32 frame_ptr = m_cpu.ebp(); while (frame_ptr) { u32 ret_ptr = m_mmu.read32({ 0x20, frame_ptr + 4 }); if (!ret_ptr) return; symbol = m_elf->symbolicate(ret_ptr, &offset); printf("> %#08x %s +%#x\n", ret_ptr, symbol.characters(), offset); frame_ptr = m_mmu.read32({ 0x20, frame_ptr }); } } u32 Emulator::virt_syscall(u32 function, u32 arg1, u32 arg2, u32 arg3) { (void)arg2; (void)arg3; printf("Syscall: %s (%x)\n", Syscall::to_string((Syscall::Function)function), function); switch (function) { case SC_gettid: return virt$gettid(); case SC_pledge: return virt$pledge(arg1); case SC_unveil: return virt$unveil(arg1); case SC_getuid: return virt$getuid(); case SC_exit: virt$exit((int)arg1); return 0; default: warn() << "Unimplemented syscall!"; dump_backtrace(); TODO(); } } u32 Emulator::virt$gettid() { return gettid(); } u32 Emulator::virt$pledge(u32) { return 0; } u32 Emulator::virt$unveil(u32) { return 0; } uid_t Emulator::virt$getuid() { return getuid(); } void Emulator::virt$exit(int status) { out() << "exit(" << status << "), shutting down!"; m_exit_status = status; m_shutdown = true; } }