#include "MemoryManager.h"
#include <AK/Assertions.h>
#include <AK/kstdio.h>
#include <AK/kmalloc.h>
#include "i386.h"
#include "StdLib.h"
#include "Process.h"
#include <LibC/errno_numbers.h>

//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
#define SCRUB_DEALLOCATED_PAGE_TABLES

static MemoryManager* s_the;

MemoryManager& MM
{
    return *s_the;
}

MemoryManager::MemoryManager()
{
    m_kernel_page_directory = (PageDirectory*)0x4000;
    m_page_table_zero = (dword*)0x6000;
    m_page_table_one = (dword*)0x7000;

    m_next_laddr.set(0xd0000000);

    initialize_paging();
}

MemoryManager::~MemoryManager()
{
}

void MemoryManager::populate_page_directory(PageDirectory& page_directory)
{
    memset(&page_directory, 0, sizeof(PageDirectory));
    page_directory.entries[0] = m_kernel_page_directory->entries[0];
    page_directory.entries[1] = m_kernel_page_directory->entries[1];
}

void MemoryManager::release_page_directory(PageDirectory& page_directory)
{
    ASSERT_INTERRUPTS_DISABLED();
#ifdef MM_DEBUG
    dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
#endif
    for (size_t i = 0; i < 1024; ++i) {
        auto& page_table = page_directory.physical_pages[i];
        if (!page_table.is_null()) {
#ifdef MM_DEBUG
            dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
#endif
            deallocate_page_table(page_directory, i);
        }
    }
#ifdef SCRUB_DEALLOCATED_PAGE_TABLES
    memset(&page_directory, 0xc9, sizeof(PageDirectory));
#endif

    kfree_aligned(&page_directory);
}

void MemoryManager::initialize_paging()
{
    static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
    static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
    memset(m_page_table_zero, 0, PAGE_SIZE);
    memset(m_page_table_one, 0, PAGE_SIZE);
    memset(m_kernel_page_directory, 0, sizeof(PageDirectory));

#ifdef MM_DEBUG
    dbgprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
#endif

    // Make null dereferences crash.
    map_protected(LinearAddress(0), PAGE_SIZE);

    // The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
    create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
 
    // The physical pages 4 MB through 8 MB are available for allocation.
    for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
        m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));

    asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
    asm volatile(
        "movl %cr0, %eax\n"
        "orl $0x80000001, %eax\n"
        "movl %eax, %cr0\n"
    );
}

RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
{
    auto& page_directory_physical_ptr = page_directory.physical_pages[index];
    ASSERT(!page_directory_physical_ptr);
    auto physical_page = allocate_physical_page();
    if (!physical_page)
        return nullptr;
    dword address = physical_page->paddr().get();
    create_identity_mapping(LinearAddress(address), PAGE_SIZE);
    memset((void*)address, 0, PAGE_SIZE);
    page_directory.physical_pages[index] = move(physical_page);
    return page_directory.physical_pages[index];
}

void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
{
    auto& physical_page = page_directory.physical_pages[index];
    ASSERT(physical_page);
    //FIXME: This line is buggy and effectful somehow :(
    //ASSERT(!m_free_physical_pages.contains_slow(physical_page));
    for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
        ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
    }
    remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
    page_directory.physical_pages[index] = nullptr;
}

void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
{
    InterruptDisabler disabler;
    // FIXME: ASSERT(laddr is 4KB aligned);
    for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
        auto pte_address = laddr.offset(offset);
        auto pte = ensure_pte(m_kernel_page_directory, pte_address);
        pte.set_physical_page_base(0);
        pte.set_user_allowed(false);
        pte.set_present(true);
        pte.set_writable(true);
        flush_tlb(pte_address);
    }
}

auto MemoryManager::ensure_pte(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
{
    ASSERT_INTERRUPTS_DISABLED();
    dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
    dword page_table_index = (laddr.get() >> 12) & 0x3ff;

    PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
    if (!pde.is_present()) {
#ifdef MM_DEBUG
        dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
#endif
        if (page_directory_index == 0) {
            ASSERT(page_directory == m_kernel_page_directory);
            pde.setPageTableBase((dword)m_page_table_zero);
            pde.set_user_allowed(false);
            pde.set_present(true);
            pde.set_writable(true);
        } else if (page_directory_index == 1) {
            ASSERT(page_directory == m_kernel_page_directory);
            pde.setPageTableBase((dword)m_page_table_one);
            pde.set_user_allowed(false);
            pde.set_present(true);
            pde.set_writable(true);
        } else {
            auto page_table = allocate_page_table(*page_directory, page_directory_index);
#ifdef MM_DEBUG
            dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
                page_directory,
                page_directory == m_kernel_page_directory ? "Kernel" : "User",
                page_directory_index,
                laddr.get(),
                page_table->paddr().get());
#endif

            pde.setPageTableBase(page_table->paddr().get());
            pde.set_user_allowed(true);
            pde.set_present(true);
            pde.set_writable(true);
            page_directory->physical_pages[page_directory_index] = move(page_table);
        }
    }
    return PageTableEntry(&pde.pageTableBase()[page_table_index]);
}

void MemoryManager::map_protected(LinearAddress linearAddress, size_t length)
{
    InterruptDisabler disabler;
    // FIXME: ASSERT(linearAddress is 4KB aligned);
    for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
        auto pteAddress = linearAddress.offset(offset);
        auto pte = ensure_pte(m_kernel_page_directory, pteAddress);
        pte.set_physical_page_base(pteAddress.get());
        pte.set_user_allowed(false);
        pte.set_present(false);
        pte.set_writable(false);
        flush_tlb(pteAddress);
    }
}

void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
{
    InterruptDisabler disabler;
    // FIXME: ASSERT(laddr is 4KB aligned);
    for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
        auto pteAddress = laddr.offset(offset);
        auto pte = ensure_pte(m_kernel_page_directory, pteAddress);
        pte.set_physical_page_base(pteAddress.get());
        pte.set_user_allowed(false);
        pte.set_present(true);
        pte.set_writable(true);
        flush_tlb(pteAddress);
    }
}

void MemoryManager::initialize()
{
    s_the = new MemoryManager;
}

Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
{
    ASSERT_INTERRUPTS_DISABLED();

    // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
    for (auto& region : process.m_regions) {
        if (region->contains(laddr))
            return region.ptr();
    }
    kprintf("%s(%u) Couldn't find region for L%x\n", process.name().characters(), process.pid(), laddr.get());
    return nullptr;
}

bool MemoryManager::zero_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    auto& vmo = region.vmo();
    auto physical_page = allocate_physical_page();
    byte* dest_ptr = quickmap_page(*physical_page);
    memset(dest_ptr, 0, PAGE_SIZE);
#ifdef PAGE_FAULT_DEBUG
    dbgprintf("      >> ZERO P%x\n", physical_page->paddr().get());
#endif
    unquickmap_page();
    region.cow_map.set(page_index_in_region, false);
    vmo.physical_pages()[page_index_in_region] = move(physical_page);
    unquickmap_page();
    remap_region_page(&page_directory, region, page_index_in_region, true);
    return true;
}

bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    auto& vmo = region.vmo();
    if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
        dbgprintf("    >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
#endif
        region.cow_map.set(page_index_in_region, false);
        remap_region_page(process.m_page_directory, region, page_index_in_region, true);
        return true;
    }

#ifdef PAGE_FAULT_DEBUG
    dbgprintf("    >> It's a COW page and it's time to COW!\n");
#endif
    auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
    auto physical_page = allocate_physical_page();
    byte* dest_ptr = quickmap_page(*physical_page);
    const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
#ifdef PAGE_FAULT_DEBUG
    dbgprintf("      >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
    memcpy(dest_ptr, src_ptr, PAGE_SIZE);
    vmo.physical_pages()[page_index_in_region] = move(physical_page);
    unquickmap_page();
    region.cow_map.set(page_index_in_region, false);
    remap_region_page(process.m_page_directory, region, page_index_in_region, true);
    return true;
}

bool Region::page_in(PageDirectory& page_directory)
{
    ASSERT(!vmo().is_anonymous());
    ASSERT(vmo().vnode());
#ifdef MM_DEBUG
    dbgprintf("MM: page_in %u pages\n", page_count());
#endif
    for (size_t i = 0; i < page_count(); ++i) {
        auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
        if (vmo_page.is_null()) {
            bool success = MM.page_in_from_vnode(page_directory, *this, i);
            if (!success)
                return false;
        }
        MM.remap_region_page(&page_directory, *this, i, true);
    }
    return true;
}

bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
{
    auto& vmo = region.vmo();
    ASSERT(!vmo.is_anonymous());
    ASSERT(vmo.vnode());
    auto& vnode = *vmo.vnode();
    auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
    ASSERT(vmo_page.is_null());
    vmo_page = allocate_physical_page();
    if (vmo_page.is_null()) {
        kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n");
        return false;
    }
    remap_region_page(&page_directory, region, page_index_in_region, true);
    byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
#ifdef MM_DEBUG
    dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr);
#endif
    sti(); // Oh god here we go...
    ASSERT(vnode.core_inode());
    auto nread = vnode.core_inode()->read_bytes(vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
    if (nread < 0) {
        kprintf("MM: page_in_from_vnode had error (%d) while reading!\n", nread);
        return false;
    }
    if (nread < PAGE_SIZE) {
        // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
        memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
    }
    cli();
    return true;
}

PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
{
    ASSERT_INTERRUPTS_DISABLED();
#ifdef PAGE_FAULT_DEBUG
    dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
#endif
    auto* region = region_from_laddr(*current, fault.laddr());
    if (!region) {
        kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
        return PageFaultResponse::ShouldCrash;
    }
    auto page_index_in_region = region->page_index_from_address(fault.laddr());
    if (fault.is_not_present()) {
        if (region->vmo().vnode()) {
            dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region);
            page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region);
            return PageFaultResponse::Continue;
        } else {
            dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
            zero_page(*current->m_page_directory, *region, page_index_in_region);
            return PageFaultResponse::Continue;
        }
    } else if (fault.is_protection_violation()) {
        if (region->cow_map.get(page_index_in_region)) {
            dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
            bool success = copy_on_write(*current, *region, page_index_in_region);
            ASSERT(success);
            return PageFaultResponse::Continue;
        }
        kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
    } else {
        ASSERT_NOT_REACHED();
    }



    return PageFaultResponse::ShouldCrash;
}

RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
{
    InterruptDisabler disabler;
    if (1 > m_free_physical_pages.size())
        return { };
#ifdef MM_DEBUG
    dbgprintf("MM: allocate_physical_page vending P%x\n", m_free_physical_pages.last()->paddr().get());
#endif
    return m_free_physical_pages.takeLast();
}

void MemoryManager::enter_kernel_paging_scope()
{
    InterruptDisabler disabler;
    current->m_tss.cr3 = (dword)m_kernel_page_directory;
    asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
}

void MemoryManager::enter_process_paging_scope(Process& process)
{
    InterruptDisabler disabler;
    current->m_tss.cr3 = (dword)process.m_page_directory;
    asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
}

void MemoryManager::flush_entire_tlb()
{
    asm volatile(
        "mov %cr3, %eax\n"
        "mov %eax, %cr3\n"
     );
}

void MemoryManager::flush_tlb(LinearAddress laddr)
{
    asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
}

byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
{
    ASSERT_INTERRUPTS_DISABLED();
    auto page_laddr = LinearAddress(4 * MB);
    auto pte = ensure_pte(m_kernel_page_directory, page_laddr);
    pte.set_physical_page_base(physical_page.paddr().get());
    pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
    pte.set_writable(true);
    pte.set_user_allowed(false);
    flush_tlb(page_laddr);
#ifdef MM_DEBUG
    dbgprintf("MM: >> quickmap_page L%x => P%x\n", page_laddr, physical_page.paddr().get());
#endif
    return page_laddr.asPtr();
}

void MemoryManager::unquickmap_page()
{
    ASSERT_INTERRUPTS_DISABLED();
    auto page_laddr = LinearAddress(4 * MB);
    auto pte = ensure_pte(m_kernel_page_directory, page_laddr);
#ifdef MM_DEBUG
    auto old_physical_address = pte.physical_page_base();
#endif
    pte.set_physical_page_base(0);
    pte.set_present(false);
    pte.set_writable(false);
    pte.set_user_allowed(false);
    flush_tlb(page_laddr);
#ifdef MM_DEBUG
    dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
#endif
}

void MemoryManager::remap_region_page(PageDirectory* page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
{
    InterruptDisabler disabler;
    auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
    auto pte = ensure_pte(page_directory, page_laddr);
    auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
    ASSERT(physical_page);
    pte.set_physical_page_base(physical_page->paddr().get());
    pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
    if (region.cow_map.get(page_index_in_region))
        pte.set_writable(false);
    else
        pte.set_writable(region.is_writable);
    pte.set_user_allowed(user_allowed);
    if (page_directory->is_active())
        flush_tlb(page_laddr);
#ifdef MM_DEBUG
    dbgprintf("MM: >> remap_region_page (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
#endif
}

void MemoryManager::remap_region(Process& process, Region& region)
{
    InterruptDisabler disabler;
    map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
}

void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
{
    InterruptDisabler disabler;
    auto& vmo = region.vmo();
#ifdef MM_DEBUG
    dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
#endif
    for (size_t i = 0; i < region.page_count(); ++i) {
        auto page_laddr = laddr.offset(i * PAGE_SIZE);
        auto pte = ensure_pte(page_directory, page_laddr);
        auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
        if (physical_page) {
            pte.set_physical_page_base(physical_page->paddr().get());
            pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
            // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
            if (region.cow_map.get(region.first_page_index() + i))
                pte.set_writable(false);
            else
                pte.set_writable(region.is_writable);
        } else {
            pte.set_physical_page_base(0);
            pte.set_present(false);
            pte.set_writable(region.is_writable);
        }
        pte.set_user_allowed(user_allowed);
        if (page_directory->is_active())
            flush_tlb(page_laddr);
#ifdef MM_DEBUG
        dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
    }
}

void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
{
    ASSERT((size % PAGE_SIZE) == 0);

    InterruptDisabler disabler;
    size_t numPages = size / PAGE_SIZE;
    for (size_t i = 0; i < numPages; ++i) {
        auto page_laddr = laddr.offset(i * PAGE_SIZE);
        auto pte = ensure_pte(page_directory, page_laddr);
        pte.set_physical_page_base(0);
        pte.set_present(false);
        pte.set_writable(false);
        pte.set_user_allowed(false);
        if (page_directory->is_active())
            flush_tlb(page_laddr);
#ifdef MM_DEBUG
        dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
#endif
    }
}

LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
{
    ASSERT((size % PAGE_SIZE) == 0);

    // FIXME: Recycle ranges!
    auto laddr = m_next_laddr;
    m_next_laddr.set(m_next_laddr.get() + size);
    return laddr;
}

byte* MemoryManager::create_kernel_alias_for_region(Region& region)
{
    InterruptDisabler disabler;
#ifdef MM_DEBUG
    dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
#endif
    auto laddr = allocate_linear_address_range(region.size);
    map_region_at_address(m_kernel_page_directory, region, laddr, false);
#ifdef MM_DEBUG
    dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
#endif
    return laddr.asPtr();
}

void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
{
#ifdef MM_DEBUG
    dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
#endif
    unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
}

bool MemoryManager::unmap_region(Process& process, Region& region)
{
    InterruptDisabler disabler;
    for (size_t i = 0; i < region.page_count(); ++i) {
        auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
        auto pte = ensure_pte(process.m_page_directory, laddr);
        pte.set_physical_page_base(0);
        pte.set_present(false);
        pte.set_writable(false);
        pte.set_user_allowed(false);
        if (process.m_page_directory->is_active())
            flush_tlb(laddr);
#ifdef MM_DEBUG
        auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
        dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
#endif
    }
    return true;
}

bool MemoryManager::map_region(Process& process, Region& region)
{
    map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
    return true;
}

bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
{
    dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
    dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
    auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
    if (!pde.is_present())
        return false;
    auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
    if (!pte.is_present())
        return false;
    if (!pte.is_user_allowed())
        return false;
    return true;
}

bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
{
    dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
    dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
    auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
    if (!pde.is_present())
        return false;
    auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
    if (!pte.is_present())
        return false;
    if (!pte.is_user_allowed())
        return false;
    if (!pte.is_writable())
        return false;
    return true;
}

RetainPtr<Region> Region::clone()
{
    InterruptDisabler disabler;

    if (is_readable && !is_writable) {
        // Create a new region backed by the same VMObject.
        return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
    }

    // Set up a COW region. The parent (this) region becomes COW as well!
    for (size_t i = 0; i < page_count(); ++i)
        cow_map.set(i, true);
    MM.remap_region(*current, *this);
    return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
}

Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
    : linearAddress(a)
    , size(s)
    , m_vmo(VMObject::create_anonymous(s))
    , name(move(n))
    , is_readable(r)
    , is_writable(w)
    , cow_map(Bitmap::create(m_vmo->page_count(), cow))
{
    m_vmo->set_name(name);
    MM.register_region(*this);
}

Region::Region(LinearAddress a, size_t s, RetainPtr<Vnode>&& vnode, String&& n, bool r, bool w)
    : linearAddress(a)
    , size(s)
    , m_vmo(VMObject::create_file_backed(move(vnode), s))
    , name(move(n))
    , is_readable(r)
    , is_writable(w)
    , cow_map(Bitmap::create(m_vmo->page_count()))
{
    MM.register_region(*this);
}

Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
    : linearAddress(a)
    , size(s)
    , m_offset_in_vmo(offset_in_vmo)
    , m_vmo(move(vmo))
    , name(move(n))
    , is_readable(r)
    , is_writable(w)
    , cow_map(Bitmap::create(m_vmo->page_count(), cow))
{
    MM.register_region(*this);
}

Region::~Region()
{
    MM.unregister_region(*this);
}

void PhysicalPage::return_to_freelist()
{
    InterruptDisabler disabler;
    m_retain_count = 1;
    MM.m_free_physical_pages.append(adopt(*this));
#ifdef MM_DEBUG
    dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
#endif
}

RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Vnode>&& vnode, size_t size)
{
    InterruptDisabler disabler;
    if (vnode->vmo())
        return static_cast<VMObject*>(vnode->vmo());
    size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
    auto vmo = adopt(*new VMObject(move(vnode), size));
    vmo->vnode()->set_vmo(vmo.ptr());
    return vmo;
}

RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
{
    size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
    return adopt(*new VMObject(size));
}

RetainPtr<VMObject> VMObject::clone()
{
    return adopt(*new VMObject(*this));
}

VMObject::VMObject(VMObject& other)
    : m_name(other.m_name)
    , m_anonymous(other.m_anonymous)
    , m_vnode_offset(other.m_vnode_offset)
    , m_size(other.m_size)
    , m_vnode(other.m_vnode)
    , m_physical_pages(other.m_physical_pages)
{
    MM.register_vmo(*this);
}

VMObject::VMObject(size_t size)
    : m_anonymous(true)
    , m_size(size)
{
    MM.register_vmo(*this);
    m_physical_pages.resize(page_count());
}

VMObject::VMObject(RetainPtr<Vnode>&& vnode, size_t size)
    : m_size(size)
    , m_vnode(move(vnode))
{
    m_physical_pages.resize(page_count());
    MM.register_vmo(*this);
}

VMObject::~VMObject()
{
    if (m_vnode) {
        ASSERT(m_vnode->vmo() == this);
        m_vnode->set_vmo(nullptr);
    }
    MM.unregister_vmo(*this);
}

int Region::commit(Process& process)
{
    InterruptDisabler disabler;
#ifdef MM_DEBUG
    dbgprintf("MM: commit %u pages in at L%x\n", vmo().page_count(), linearAddress.get());
#endif
    for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
        if (!vmo().physical_pages()[i].is_null())
            continue;
        auto physical_page = MM.allocate_physical_page();
        if (!physical_page) {
            kprintf("MM: commit was unable to allocate a physical page\n");
            return -ENOMEM;
        }
        vmo().physical_pages()[i] = move(physical_page);
        MM.remap_region_page(process.m_page_directory, *this, i, true);
    }
    return 0;
}

void MemoryManager::register_vmo(VMObject& vmo)
{
    InterruptDisabler disabler;
    m_vmos.set(&vmo);
}

void MemoryManager::unregister_vmo(VMObject& vmo)
{
    InterruptDisabler disabler;
    m_vmos.remove(&vmo);
}

void MemoryManager::register_region(Region& region)
{
    InterruptDisabler disabler;
    m_regions.set(&region);
}

void MemoryManager::unregister_region(Region& region)
{
    InterruptDisabler disabler;
    m_regions.remove(&region);
}

inline bool PageDirectory::is_active() const
{
    return &current->page_directory() == this;
}

size_t Region::committed() const
{
    size_t bytes = 0;
    for (size_t i = 0; i < page_count(); ++i) {
        if (m_vmo->physical_pages()[first_page_index() + i])
            bytes += PAGE_SIZE;
    }
    return bytes;
}