/* * Copyright (c) 2021-2024, Andreas Kling <andreas@ladybird.org> * * SPDX-License-Identifier: BSD-2-Clause */ #include <AK/Debug.h> #include <AK/HashTable.h> #include <AK/TemporaryChange.h> #include <LibJS/AST.h> #include <LibJS/Bytecode/BasicBlock.h> #include <LibJS/Bytecode/Generator.h> #include <LibJS/Bytecode/Instruction.h> #include <LibJS/Bytecode/Interpreter.h> #include <LibJS/Bytecode/Label.h> #include <LibJS/Bytecode/Op.h> #include <LibJS/Runtime/AbstractOperations.h> #include <LibJS/Runtime/Accessor.h> #include <LibJS/Runtime/Array.h> #include <LibJS/Runtime/BigInt.h> #include <LibJS/Runtime/DeclarativeEnvironment.h> #include <LibJS/Runtime/ECMAScriptFunctionObject.h> #include <LibJS/Runtime/Environment.h> #include <LibJS/Runtime/FunctionEnvironment.h> #include <LibJS/Runtime/GlobalEnvironment.h> #include <LibJS/Runtime/GlobalObject.h> #include <LibJS/Runtime/Iterator.h> #include <LibJS/Runtime/MathObject.h> #include <LibJS/Runtime/NativeFunction.h> #include <LibJS/Runtime/ObjectEnvironment.h> #include <LibJS/Runtime/Realm.h> #include <LibJS/Runtime/Reference.h> #include <LibJS/Runtime/RegExpObject.h> #include <LibJS/Runtime/TypedArray.h> #include <LibJS/Runtime/Value.h> #include <LibJS/Runtime/ValueInlines.h> #include <LibJS/SourceTextModule.h> namespace JS::Bytecode { bool g_dump_bytecode = false; static ByteString format_operand(StringView name, Operand operand, Bytecode::Executable const& executable) { StringBuilder builder; if (!name.is_empty()) builder.appendff("\033[32m{}\033[0m:", name); switch (operand.type()) { case Operand::Type::Register: if (operand.index() == Register::this_value().index()) { builder.appendff("\033[33mthis\033[0m"); } else { builder.appendff("\033[33mreg{}\033[0m", operand.index()); } break; case Operand::Type::Local: builder.appendff("\033[34m{}~{}\033[0m", executable.local_variable_names[operand.index() - executable.local_index_base], operand.index() - executable.local_index_base); break; case Operand::Type::Constant: { builder.append("\033[36m"sv); auto value = executable.constants[operand.index() - executable.number_of_registers]; if (value.is_empty()) builder.append("<Empty>"sv); else if (value.is_boolean()) builder.appendff("Bool({})", value.as_bool() ? "true"sv : "false"sv); else if (value.is_int32()) builder.appendff("Int32({})", value.as_i32()); else if (value.is_double()) builder.appendff("Double({})", value.as_double()); else if (value.is_bigint()) builder.appendff("BigInt({})", value.as_bigint().to_byte_string()); else if (value.is_string()) builder.appendff("String(\"{}\")", value.as_string().utf8_string_view()); else if (value.is_undefined()) builder.append("Undefined"sv); else if (value.is_null()) builder.append("Null"sv); else builder.appendff("Value: {}", value); builder.append("\033[0m"sv); break; } default: VERIFY_NOT_REACHED(); } return builder.to_byte_string(); } static ByteString format_operand_list(StringView name, ReadonlySpan<Operand> operands, Bytecode::Executable const& executable) { StringBuilder builder; if (!name.is_empty()) builder.appendff("\033[32m{}\033[0m:[", name); for (size_t i = 0; i < operands.size(); ++i) { if (i != 0) builder.append(", "sv); builder.appendff("{}", format_operand(""sv, operands[i], executable)); } builder.append("]"sv); return builder.to_byte_string(); } static ByteString format_value_list(StringView name, ReadonlySpan<Value> values) { StringBuilder builder; if (!name.is_empty()) builder.appendff("\033[32m{}\033[0m:[", name); builder.join(", "sv, values); builder.append("]"sv); return builder.to_byte_string(); } ALWAYS_INLINE static ThrowCompletionOr<Value> loosely_inequals(VM& vm, Value src1, Value src2) { if (src1.tag() == src2.tag()) { if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish()) return Value(src1.encoded() != src2.encoded()); } return Value(!TRY(is_loosely_equal(vm, src1, src2))); } ALWAYS_INLINE static ThrowCompletionOr<Value> loosely_equals(VM& vm, Value src1, Value src2) { if (src1.tag() == src2.tag()) { if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish()) return Value(src1.encoded() == src2.encoded()); } return Value(TRY(is_loosely_equal(vm, src1, src2))); } ALWAYS_INLINE static ThrowCompletionOr<Value> strict_inequals(VM&, Value src1, Value src2) { if (src1.tag() == src2.tag()) { if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish()) return Value(src1.encoded() != src2.encoded()); } return Value(!is_strictly_equal(src1, src2)); } ALWAYS_INLINE static ThrowCompletionOr<Value> strict_equals(VM&, Value src1, Value src2) { if (src1.tag() == src2.tag()) { if (src1.is_int32() || src1.is_object() || src1.is_boolean() || src1.is_nullish()) return Value(src1.encoded() == src2.encoded()); } return Value(is_strictly_equal(src1, src2)); } Interpreter::Interpreter(VM& vm) : m_vm(vm) { } Interpreter::~Interpreter() { } ALWAYS_INLINE Value Interpreter::get(Operand op) const { return m_registers_and_constants_and_locals.data()[op.index()]; } ALWAYS_INLINE void Interpreter::set(Operand op, Value value) { m_registers_and_constants_and_locals.data()[op.index()] = value; } ALWAYS_INLINE Value Interpreter::do_yield(Value value, Optional<Label> continuation) { auto object = Object::create(realm(), nullptr); object->define_direct_property("result", value, JS::default_attributes); if (continuation.has_value()) // FIXME: If we get a pointer, which is not accurately representable as a double // will cause this to explode object->define_direct_property("continuation", Value(continuation->address()), JS::default_attributes); else object->define_direct_property("continuation", js_null(), JS::default_attributes); object->define_direct_property("isAwait", Value(false), JS::default_attributes); return object; } // 16.1.6 ScriptEvaluation ( scriptRecord ), https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation ThrowCompletionOr<Value> Interpreter::run(Script& script_record, GC::Ptr<Environment> lexical_environment_override) { auto& vm = this->vm(); // 1. Let globalEnv be scriptRecord.[[Realm]].[[GlobalEnv]]. auto& global_environment = script_record.realm().global_environment(); // 2. Let scriptContext be a new ECMAScript code execution context. auto script_context = ExecutionContext::create(); // 3. Set the Function of scriptContext to null. // NOTE: This was done during execution context construction. // 4. Set the Realm of scriptContext to scriptRecord.[[Realm]]. script_context->realm = &script_record.realm(); // 5. Set the ScriptOrModule of scriptContext to scriptRecord. script_context->script_or_module = GC::Ref<Script>(script_record); // 6. Set the VariableEnvironment of scriptContext to globalEnv. script_context->variable_environment = &global_environment; // 7. Set the LexicalEnvironment of scriptContext to globalEnv. script_context->lexical_environment = &global_environment; // Non-standard: Override the lexical environment if requested. if (lexical_environment_override) script_context->lexical_environment = lexical_environment_override; // 8. Set the PrivateEnvironment of scriptContext to null. // NOTE: This isn't in the spec, but we require it. script_context->is_strict_mode = script_record.parse_node().is_strict_mode(); // FIXME: 9. Suspend the currently running execution context. // 10. Push scriptContext onto the execution context stack; scriptContext is now the running execution context. TRY(vm.push_execution_context(*script_context, {})); // 11. Let script be scriptRecord.[[ECMAScriptCode]]. auto& script = script_record.parse_node(); // 12. Let result be Completion(GlobalDeclarationInstantiation(script, globalEnv)). auto instantiation_result = script.global_declaration_instantiation(vm, global_environment); Completion result = instantiation_result.is_throw_completion() ? instantiation_result.throw_completion() : normal_completion({}); // 13. If result.[[Type]] is normal, then if (result.type() == Completion::Type::Normal) { auto executable_result = JS::Bytecode::Generator::generate_from_ast_node(vm, script, {}); if (executable_result.is_error()) { if (auto error_string = executable_result.error().to_string(); error_string.is_error()) result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory)); else if (error_string = String::formatted("TODO({})", error_string.value()); error_string.is_error()) result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory)); else result = JS::throw_completion(JS::InternalError::create(realm(), error_string.release_value())); } else { auto executable = executable_result.release_value(); if (g_dump_bytecode) executable->dump(); // a. Set result to the result of evaluating script. auto result_or_error = run_executable(*executable, {}, {}); if (result_or_error.value.is_error()) result = result_or_error.value.release_error(); else result = result_or_error.return_register_value; } } // 14. If result.[[Type]] is normal and result.[[Value]] is empty, then if (result.type() == Completion::Type::Normal && !result.value().has_value()) { // a. Set result to NormalCompletion(undefined). result = normal_completion(js_undefined()); } // FIXME: 15. Suspend scriptContext and remove it from the execution context stack. vm.pop_execution_context(); // 16. Assert: The execution context stack is not empty. VERIFY(!vm.execution_context_stack().is_empty()); // FIXME: 17. Resume the context that is now on the top of the execution context stack as the running execution context. // At this point we may have already run any queued promise jobs via on_call_stack_emptied, // in which case this is a no-op. // FIXME: These three should be moved out of Interpreter::run and give the host an option to run these, as it's up to the host when these get run. // https://tc39.es/ecma262/#sec-jobs for jobs and https://tc39.es/ecma262/#_ref_3508 for ClearKeptObjects // finish_execution_generation is particularly an issue for LibWeb, as the HTML spec wants to run it specifically after performing a microtask checkpoint. // The promise and registry cleanup queues don't cause LibWeb an issue, as LibWeb overrides the hooks that push onto these queues. vm.run_queued_promise_jobs(); vm.run_queued_finalization_registry_cleanup_jobs(); vm.finish_execution_generation(); // 18. Return ? result. if (result.is_abrupt()) { VERIFY(result.type() == Completion::Type::Throw); return result.release_error(); } VERIFY(result.value().has_value()); return *result.value(); } ThrowCompletionOr<Value> Interpreter::run(SourceTextModule& module) { // FIXME: This is not a entry point as defined in the spec, but is convenient. // To avoid work we use link_and_eval_module however that can already be // dangerous if the vm loaded other modules. auto& vm = this->vm(); TRY(vm.link_and_eval_module(Badge<Bytecode::Interpreter> {}, module)); vm.run_queued_promise_jobs(); vm.run_queued_finalization_registry_cleanup_jobs(); return js_undefined(); } Interpreter::HandleExceptionResponse Interpreter::handle_exception(size_t& program_counter, Value exception) { reg(Register::exception()) = exception; m_scheduled_jump = {}; auto handlers = current_executable().exception_handlers_for_offset(program_counter); if (!handlers.has_value()) { return HandleExceptionResponse::ExitFromExecutable; } auto& handler = handlers->handler_offset; auto& finalizer = handlers->finalizer_offset; VERIFY(!running_execution_context().unwind_contexts.is_empty()); auto& unwind_context = running_execution_context().unwind_contexts.last(); VERIFY(unwind_context.executable == m_current_executable); if (handler.has_value()) { program_counter = handler.value(); return HandleExceptionResponse::ContinueInThisExecutable; } if (finalizer.has_value()) { program_counter = finalizer.value(); return HandleExceptionResponse::ContinueInThisExecutable; } VERIFY_NOT_REACHED(); } // FIXME: GCC takes a *long* time to compile with flattening, and it will time out our CI. :| #if defined(AK_COMPILER_CLANG) # define FLATTEN_ON_CLANG FLATTEN #else # define FLATTEN_ON_CLANG #endif FLATTEN_ON_CLANG void Interpreter::run_bytecode(size_t entry_point) { if (vm().did_reach_stack_space_limit()) { reg(Register::exception()) = vm().throw_completion<InternalError>(ErrorType::CallStackSizeExceeded).release_value().value(); return; } auto& running_execution_context = this->running_execution_context(); auto* arguments = running_execution_context.arguments.data(); auto& accumulator = this->accumulator(); auto& executable = current_executable(); auto const* bytecode = executable.bytecode.data(); size_t program_counter = entry_point; TemporaryChange change(m_program_counter, Optional<size_t&>(program_counter)); // Declare a lookup table for computed goto with each of the `handle_*` labels // to avoid the overhead of a switch statement. // This is a GCC extension, but it's also supported by Clang. static void* const bytecode_dispatch_table[] = { #define SET_UP_LABEL(name) &&handle_##name, ENUMERATE_BYTECODE_OPS(SET_UP_LABEL) }; #undef SET_UP_LABEL #define DISPATCH_NEXT(name) \ do { \ if constexpr (Op::name::IsVariableLength) \ program_counter += instruction.length(); \ else \ program_counter += sizeof(Op::name); \ auto& next_instruction = *reinterpret_cast<Instruction const*>(&bytecode[program_counter]); \ goto* bytecode_dispatch_table[static_cast<size_t>(next_instruction.type())]; \ } while (0) for (;;) { start: for (;;) { goto* bytecode_dispatch_table[static_cast<size_t>((*reinterpret_cast<Instruction const*>(&bytecode[program_counter])).type())]; handle_GetArgument: { auto const& instruction = *reinterpret_cast<Op::GetArgument const*>(&bytecode[program_counter]); set(instruction.dst(), arguments[instruction.index()]); DISPATCH_NEXT(GetArgument); } handle_SetArgument: { auto const& instruction = *reinterpret_cast<Op::SetArgument const*>(&bytecode[program_counter]); arguments[instruction.index()] = get(instruction.src()); DISPATCH_NEXT(SetArgument); } handle_Mov: { auto& instruction = *reinterpret_cast<Op::Mov const*>(&bytecode[program_counter]); set(instruction.dst(), get(instruction.src())); DISPATCH_NEXT(Mov); } handle_End: { auto& instruction = *reinterpret_cast<Op::End const*>(&bytecode[program_counter]); accumulator = get(instruction.value()); return; } handle_Jump: { auto& instruction = *reinterpret_cast<Op::Jump const*>(&bytecode[program_counter]); program_counter = instruction.target().address(); goto start; } handle_JumpIf: { auto& instruction = *reinterpret_cast<Op::JumpIf const*>(&bytecode[program_counter]); if (get(instruction.condition()).to_boolean()) program_counter = instruction.true_target().address(); else program_counter = instruction.false_target().address(); goto start; } handle_JumpTrue: { auto& instruction = *reinterpret_cast<Op::JumpTrue const*>(&bytecode[program_counter]); if (get(instruction.condition()).to_boolean()) { program_counter = instruction.target().address(); goto start; } DISPATCH_NEXT(JumpTrue); } handle_JumpFalse: { auto& instruction = *reinterpret_cast<Op::JumpFalse const*>(&bytecode[program_counter]); if (!get(instruction.condition()).to_boolean()) { program_counter = instruction.target().address(); goto start; } DISPATCH_NEXT(JumpFalse); } handle_JumpNullish: { auto& instruction = *reinterpret_cast<Op::JumpNullish const*>(&bytecode[program_counter]); if (get(instruction.condition()).is_nullish()) program_counter = instruction.true_target().address(); else program_counter = instruction.false_target().address(); goto start; } #define HANDLE_COMPARISON_OP(op_TitleCase, op_snake_case, numeric_operator) \ handle_Jump##op_TitleCase: \ { \ auto& instruction = *reinterpret_cast<Op::Jump##op_TitleCase const*>(&bytecode[program_counter]); \ auto lhs = get(instruction.lhs()); \ auto rhs = get(instruction.rhs()); \ if (lhs.is_number() && rhs.is_number()) { \ bool result; \ if (lhs.is_int32() && rhs.is_int32()) { \ result = lhs.as_i32() numeric_operator rhs.as_i32(); \ } else { \ result = lhs.as_double() numeric_operator rhs.as_double(); \ } \ program_counter = result ? instruction.true_target().address() : instruction.false_target().address(); \ goto start; \ } \ auto result = op_snake_case(vm(), get(instruction.lhs()), get(instruction.rhs())); \ if (result.is_error()) { \ if (handle_exception(program_counter, result.error_value()) == HandleExceptionResponse::ExitFromExecutable) \ return; \ goto start; \ } \ if (result.value().to_boolean()) \ program_counter = instruction.true_target().address(); \ else \ program_counter = instruction.false_target().address(); \ goto start; \ } JS_ENUMERATE_COMPARISON_OPS(HANDLE_COMPARISON_OP) #undef HANDLE_COMPARISON_OP handle_JumpUndefined: { auto& instruction = *reinterpret_cast<Op::JumpUndefined const*>(&bytecode[program_counter]); if (get(instruction.condition()).is_undefined()) program_counter = instruction.true_target().address(); else program_counter = instruction.false_target().address(); goto start; } handle_EnterUnwindContext: { auto& instruction = *reinterpret_cast<Op::EnterUnwindContext const*>(&bytecode[program_counter]); enter_unwind_context(); program_counter = instruction.entry_point().address(); goto start; } handle_ContinuePendingUnwind: { auto& instruction = *reinterpret_cast<Op::ContinuePendingUnwind const*>(&bytecode[program_counter]); if (auto exception = reg(Register::exception()); !exception.is_empty()) { if (handle_exception(program_counter, exception) == HandleExceptionResponse::ExitFromExecutable) return; goto start; } if (!saved_return_value().is_empty()) { do_return(saved_return_value()); if (auto handlers = executable.exception_handlers_for_offset(program_counter); handlers.has_value()) { if (auto finalizer = handlers.value().finalizer_offset; finalizer.has_value()) { VERIFY(!running_execution_context.unwind_contexts.is_empty()); auto& unwind_context = running_execution_context.unwind_contexts.last(); VERIFY(unwind_context.executable == m_current_executable); reg(Register::saved_return_value()) = reg(Register::return_value()); reg(Register::return_value()) = {}; program_counter = finalizer.value(); // the unwind_context will be pop'ed when entering the finally block goto start; } } return; } auto const old_scheduled_jump = running_execution_context.previously_scheduled_jumps.take_last(); if (m_scheduled_jump.has_value()) { program_counter = m_scheduled_jump.value(); m_scheduled_jump = {}; } else { program_counter = instruction.resume_target().address(); // set the scheduled jump to the old value if we continue // where we left it m_scheduled_jump = old_scheduled_jump; } goto start; } handle_ScheduleJump: { auto& instruction = *reinterpret_cast<Op::ScheduleJump const*>(&bytecode[program_counter]); m_scheduled_jump = instruction.target().address(); auto finalizer = executable.exception_handlers_for_offset(program_counter).value().finalizer_offset; VERIFY(finalizer.has_value()); program_counter = finalizer.value(); goto start; } #define HANDLE_INSTRUCTION(name) \ handle_##name: \ { \ auto& instruction = *reinterpret_cast<Op::name const*>(&bytecode[program_counter]); \ { \ auto result = instruction.execute_impl(*this); \ if (result.is_error()) { \ if (handle_exception(program_counter, result.error_value()) == HandleExceptionResponse::ExitFromExecutable) \ return; \ goto start; \ } \ } \ DISPATCH_NEXT(name); \ } #define HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(name) \ handle_##name: \ { \ auto& instruction = *reinterpret_cast<Op::name const*>(&bytecode[program_counter]); \ instruction.execute_impl(*this); \ DISPATCH_NEXT(name); \ } HANDLE_INSTRUCTION(Add); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(AddPrivateName); HANDLE_INSTRUCTION(ArrayAppend); HANDLE_INSTRUCTION(AsyncIteratorClose); HANDLE_INSTRUCTION(BitwiseAnd); HANDLE_INSTRUCTION(BitwiseNot); HANDLE_INSTRUCTION(BitwiseOr); HANDLE_INSTRUCTION(BitwiseXor); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(BlockDeclarationInstantiation); HANDLE_INSTRUCTION(Call); HANDLE_INSTRUCTION(CallBuiltin); HANDLE_INSTRUCTION(CallConstruct); HANDLE_INSTRUCTION(CallDirectEval); HANDLE_INSTRUCTION(CallWithArgumentArray); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(Catch); HANDLE_INSTRUCTION(ConcatString); HANDLE_INSTRUCTION(CopyObjectExcludingProperties); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(CreateLexicalEnvironment); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(CreateVariableEnvironment); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(CreatePrivateEnvironment); HANDLE_INSTRUCTION(CreateVariable); HANDLE_INSTRUCTION(CreateRestParams); HANDLE_INSTRUCTION(CreateArguments); HANDLE_INSTRUCTION(Decrement); HANDLE_INSTRUCTION(DeleteById); HANDLE_INSTRUCTION(DeleteByIdWithThis); HANDLE_INSTRUCTION(DeleteByValue); HANDLE_INSTRUCTION(DeleteByValueWithThis); HANDLE_INSTRUCTION(DeleteVariable); HANDLE_INSTRUCTION(Div); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(Dump); HANDLE_INSTRUCTION(EnterObjectEnvironment); HANDLE_INSTRUCTION(Exp); HANDLE_INSTRUCTION(GetById); HANDLE_INSTRUCTION(GetByIdWithThis); HANDLE_INSTRUCTION(GetByValue); HANDLE_INSTRUCTION(GetByValueWithThis); HANDLE_INSTRUCTION(GetCalleeAndThisFromEnvironment); HANDLE_INSTRUCTION(GetGlobal); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(GetImportMeta); HANDLE_INSTRUCTION(GetIterator); HANDLE_INSTRUCTION(GetLength); HANDLE_INSTRUCTION(GetLengthWithThis); HANDLE_INSTRUCTION(GetMethod); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(GetNewTarget); HANDLE_INSTRUCTION(GetNextMethodFromIteratorRecord); HANDLE_INSTRUCTION(GetObjectFromIteratorRecord); HANDLE_INSTRUCTION(GetObjectPropertyIterator); HANDLE_INSTRUCTION(GetPrivateById); HANDLE_INSTRUCTION(GetBinding); HANDLE_INSTRUCTION(GreaterThan); HANDLE_INSTRUCTION(GreaterThanEquals); HANDLE_INSTRUCTION(HasPrivateId); HANDLE_INSTRUCTION(ImportCall); HANDLE_INSTRUCTION(In); HANDLE_INSTRUCTION(Increment); HANDLE_INSTRUCTION(InitializeLexicalBinding); HANDLE_INSTRUCTION(InitializeVariableBinding); HANDLE_INSTRUCTION(InstanceOf); HANDLE_INSTRUCTION(IteratorClose); HANDLE_INSTRUCTION(IteratorNext); HANDLE_INSTRUCTION(IteratorToArray); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeaveFinally); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeaveLexicalEnvironment); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeavePrivateEnvironment); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(LeaveUnwindContext); HANDLE_INSTRUCTION(LeftShift); HANDLE_INSTRUCTION(LessThan); HANDLE_INSTRUCTION(LessThanEquals); HANDLE_INSTRUCTION(LooselyEquals); HANDLE_INSTRUCTION(LooselyInequals); HANDLE_INSTRUCTION(Mod); HANDLE_INSTRUCTION(Mul); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewArray); HANDLE_INSTRUCTION(NewClass); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewFunction); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewObject); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewPrimitiveArray); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewRegExp); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(NewTypeError); HANDLE_INSTRUCTION(Not); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(PrepareYield); HANDLE_INSTRUCTION(PostfixDecrement); HANDLE_INSTRUCTION(PostfixIncrement); HANDLE_INSTRUCTION(PutById); HANDLE_INSTRUCTION(PutByIdWithThis); HANDLE_INSTRUCTION(PutBySpread); HANDLE_INSTRUCTION(PutByValue); HANDLE_INSTRUCTION(PutByValueWithThis); HANDLE_INSTRUCTION(PutPrivateById); HANDLE_INSTRUCTION(ResolveSuperBase); HANDLE_INSTRUCTION(ResolveThisBinding); HANDLE_INSTRUCTION_WITHOUT_EXCEPTION_CHECK(RestoreScheduledJump); HANDLE_INSTRUCTION(RightShift); HANDLE_INSTRUCTION(SetLexicalBinding); HANDLE_INSTRUCTION(SetVariableBinding); HANDLE_INSTRUCTION(StrictlyEquals); HANDLE_INSTRUCTION(StrictlyInequals); HANDLE_INSTRUCTION(Sub); HANDLE_INSTRUCTION(SuperCallWithArgumentArray); HANDLE_INSTRUCTION(Throw); HANDLE_INSTRUCTION(ThrowIfNotObject); HANDLE_INSTRUCTION(ThrowIfNullish); HANDLE_INSTRUCTION(ThrowIfTDZ); HANDLE_INSTRUCTION(Typeof); HANDLE_INSTRUCTION(TypeofBinding); HANDLE_INSTRUCTION(UnaryMinus); HANDLE_INSTRUCTION(UnaryPlus); HANDLE_INSTRUCTION(UnsignedRightShift); handle_Await: { auto& instruction = *reinterpret_cast<Op::Await const*>(&bytecode[program_counter]); instruction.execute_impl(*this); return; } handle_Return: { auto& instruction = *reinterpret_cast<Op::Return const*>(&bytecode[program_counter]); instruction.execute_impl(*this); return; } handle_Yield: { auto& instruction = *reinterpret_cast<Op::Yield const*>(&bytecode[program_counter]); instruction.execute_impl(*this); // Note: A `yield` statement will not go through a finally statement, // hence we need to set a flag to not do so, // but we generate a Yield Operation in the case of returns in // generators as well, so we need to check if it will actually // continue or is a `return` in disguise return; } } } } Interpreter::ResultAndReturnRegister Interpreter::run_executable(Executable& executable, Optional<size_t> entry_point, Value initial_accumulator_value) { dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter will run unit {:p}", &executable); TemporaryChange restore_executable { m_current_executable, GC::Ptr { executable } }; TemporaryChange restore_saved_jump { m_scheduled_jump, Optional<size_t> {} }; TemporaryChange restore_realm { m_realm, GC::Ptr { vm().current_realm() } }; TemporaryChange restore_global_object { m_global_object, GC::Ptr { m_realm->global_object() } }; TemporaryChange restore_global_declarative_environment { m_global_declarative_environment, GC::Ptr { m_realm->global_environment().declarative_record() } }; VERIFY(!vm().execution_context_stack().is_empty()); auto& running_execution_context = vm().running_execution_context(); u32 registers_and_constants_and_locals_count = executable.number_of_registers + executable.constants.size() + executable.local_variable_names.size(); if (running_execution_context.registers_and_constants_and_locals.size() < registers_and_constants_and_locals_count) running_execution_context.registers_and_constants_and_locals.resize(registers_and_constants_and_locals_count); TemporaryChange restore_running_execution_context { m_running_execution_context, &running_execution_context }; TemporaryChange restore_arguments { m_arguments, running_execution_context.arguments.span() }; TemporaryChange restore_registers_and_constants_and_locals { m_registers_and_constants_and_locals, running_execution_context.registers_and_constants_and_locals.span() }; reg(Register::accumulator()) = initial_accumulator_value; reg(Register::return_value()) = {}; // NOTE: We only copy the `this` value from ExecutionContext if it's not already set. // If we are re-entering an async/generator context, the `this` value // may have already been cached by a ResolveThisBinding instruction, // and subsequent instructions expect this value to be set. if (reg(Register::this_value()).is_empty()) reg(Register::this_value()) = running_execution_context.this_value; running_execution_context.executable = &executable; for (size_t i = 0; i < executable.constants.size(); ++i) { running_execution_context.registers_and_constants_and_locals[executable.number_of_registers + i] = executable.constants[i]; } run_bytecode(entry_point.value_or(0)); dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter did run unit {:p}", &executable); if constexpr (JS_BYTECODE_DEBUG) { auto const& registers_and_constants_and_locals = running_execution_context.registers_and_constants_and_locals; for (size_t i = 0; i < executable.number_of_registers; ++i) { String value_string; if (registers_and_constants_and_locals[i].is_empty()) value_string = "(empty)"_string; else value_string = registers_and_constants_and_locals[i].to_string_without_side_effects(); dbgln("[{:3}] {}", i, value_string); } } auto return_value = js_undefined(); if (!reg(Register::return_value()).is_empty()) return_value = reg(Register::return_value()); else if (!reg(Register::saved_return_value()).is_empty()) return_value = reg(Register::saved_return_value()); auto exception = reg(Register::exception()); // At this point we may have already run any queued promise jobs via on_call_stack_emptied, // in which case this is a no-op. vm().run_queued_promise_jobs(); vm().finish_execution_generation(); if (!exception.is_empty()) return { throw_completion(exception), running_execution_context.registers_and_constants_and_locals[0] }; return { return_value, running_execution_context.registers_and_constants_and_locals[0] }; } void Interpreter::enter_unwind_context() { running_execution_context().unwind_contexts.empend( m_current_executable, running_execution_context().lexical_environment); running_execution_context().previously_scheduled_jumps.append(m_scheduled_jump); m_scheduled_jump = {}; } void Interpreter::leave_unwind_context() { running_execution_context().unwind_contexts.take_last(); } void Interpreter::catch_exception(Operand dst) { set(dst, reg(Register::exception())); reg(Register::exception()) = {}; auto& context = running_execution_context().unwind_contexts.last(); VERIFY(!context.handler_called); VERIFY(context.executable == ¤t_executable()); context.handler_called = true; running_execution_context().lexical_environment = context.lexical_environment; } void Interpreter::restore_scheduled_jump() { m_scheduled_jump = running_execution_context().previously_scheduled_jumps.take_last(); } void Interpreter::leave_finally() { reg(Register::exception()) = {}; m_scheduled_jump = running_execution_context().previously_scheduled_jumps.take_last(); } void Interpreter::enter_object_environment(Object& object) { auto& old_environment = running_execution_context().lexical_environment; running_execution_context().saved_lexical_environments.append(old_environment); running_execution_context().lexical_environment = new_object_environment(object, true, old_environment); } ThrowCompletionOr<GC::Ref<Bytecode::Executable>> compile(VM& vm, ASTNode const& node, FunctionKind kind, DeprecatedFlyString const& name) { auto executable_result = Bytecode::Generator::generate_from_ast_node(vm, node, kind); if (executable_result.is_error()) return vm.throw_completion<InternalError>(ErrorType::NotImplemented, TRY_OR_THROW_OOM(vm, executable_result.error().to_string())); auto bytecode_executable = executable_result.release_value(); bytecode_executable->name = name; if (Bytecode::g_dump_bytecode) bytecode_executable->dump(); return bytecode_executable; } ThrowCompletionOr<GC::Ref<Bytecode::Executable>> compile(VM& vm, ECMAScriptFunctionObject const& function) { auto const& name = function.name(); auto executable_result = Bytecode::Generator::generate_from_function(vm, function); if (executable_result.is_error()) return vm.throw_completion<InternalError>(ErrorType::NotImplemented, TRY_OR_THROW_OOM(vm, executable_result.error().to_string())); auto bytecode_executable = executable_result.release_value(); bytecode_executable->name = name; if (Bytecode::g_dump_bytecode) bytecode_executable->dump(); return bytecode_executable; } // NOTE: This function assumes that the index is valid within the TypedArray, // and that the TypedArray is not detached. template<typename T> inline Value fast_typed_array_get_element(TypedArrayBase& typed_array, u32 index) { Checked<u32> offset_into_array_buffer = index; offset_into_array_buffer *= sizeof(T); offset_into_array_buffer += typed_array.byte_offset(); if (offset_into_array_buffer.has_overflow()) [[unlikely]] { return js_undefined(); } auto const& array_buffer = *typed_array.viewed_array_buffer(); auto const* slot = reinterpret_cast<T const*>(array_buffer.buffer().offset_pointer(offset_into_array_buffer.value())); return Value { *slot }; } // NOTE: This function assumes that the index is valid within the TypedArray, // and that the TypedArray is not detached. template<typename T> inline void fast_typed_array_set_element(TypedArrayBase& typed_array, u32 index, T value) { Checked<u32> offset_into_array_buffer = index; offset_into_array_buffer *= sizeof(T); offset_into_array_buffer += typed_array.byte_offset(); if (offset_into_array_buffer.has_overflow()) [[unlikely]] { return; } auto& array_buffer = *typed_array.viewed_array_buffer(); auto* slot = reinterpret_cast<T*>(array_buffer.buffer().offset_pointer(offset_into_array_buffer.value())); *slot = value; } static Completion throw_null_or_undefined_property_get(VM& vm, Value base_value, Optional<IdentifierTableIndex> base_identifier, IdentifierTableIndex property_identifier, Executable const& executable) { VERIFY(base_value.is_nullish()); if (base_identifier.has_value()) return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithPropertyAndName, executable.get_identifier(property_identifier), base_value, executable.get_identifier(base_identifier.value())); return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithProperty, executable.get_identifier(property_identifier), base_value); } static Completion throw_null_or_undefined_property_get(VM& vm, Value base_value, Optional<IdentifierTableIndex> base_identifier, Value property, Executable const& executable) { VERIFY(base_value.is_nullish()); if (base_identifier.has_value()) return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithPropertyAndName, property, base_value, executable.get_identifier(base_identifier.value())); return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithProperty, property, base_value); } template<typename BaseType, typename PropertyType> ALWAYS_INLINE Completion throw_null_or_undefined_property_access(VM& vm, Value base_value, BaseType const& base_identifier, PropertyType const& property_identifier) { VERIFY(base_value.is_nullish()); bool has_base_identifier = true; bool has_property_identifier = true; if constexpr (requires { base_identifier.has_value(); }) has_base_identifier = base_identifier.has_value(); if constexpr (requires { property_identifier.has_value(); }) has_property_identifier = property_identifier.has_value(); if (has_base_identifier && has_property_identifier) return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithPropertyAndName, property_identifier, base_value, base_identifier); if (has_property_identifier) return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithProperty, property_identifier, base_value); if (has_base_identifier) return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefinedWithName, base_identifier, base_value); return vm.throw_completion<TypeError>(ErrorType::ToObjectNullOrUndefined); } ALWAYS_INLINE GC::Ptr<Object> base_object_for_get_impl(VM& vm, Value base_value) { if (base_value.is_object()) [[likely]] return base_value.as_object(); // OPTIMIZATION: For various primitives we can avoid actually creating a new object for them. auto& realm = *vm.current_realm(); if (base_value.is_string()) return realm.intrinsics().string_prototype(); if (base_value.is_number()) return realm.intrinsics().number_prototype(); if (base_value.is_boolean()) return realm.intrinsics().boolean_prototype(); if (base_value.is_bigint()) return realm.intrinsics().bigint_prototype(); if (base_value.is_symbol()) return realm.intrinsics().symbol_prototype(); return nullptr; } ALWAYS_INLINE ThrowCompletionOr<GC::Ref<Object>> base_object_for_get(VM& vm, Value base_value, Optional<IdentifierTableIndex> base_identifier, IdentifierTableIndex property_identifier, Executable const& executable) { if (auto base_object = base_object_for_get_impl(vm, base_value)) return GC::Ref { *base_object }; // NOTE: At this point this is guaranteed to throw (null or undefined). return throw_null_or_undefined_property_get(vm, base_value, base_identifier, property_identifier, executable); } ALWAYS_INLINE ThrowCompletionOr<GC::Ref<Object>> base_object_for_get(VM& vm, Value base_value, Optional<IdentifierTableIndex> base_identifier, Value property, Executable const& executable) { if (auto base_object = base_object_for_get_impl(vm, base_value)) return GC::Ref { *base_object }; // NOTE: At this point this is guaranteed to throw (null or undefined). return throw_null_or_undefined_property_get(vm, base_value, base_identifier, property, executable); } enum class GetByIdMode { Normal, Length, }; template<GetByIdMode mode = GetByIdMode::Normal> inline ThrowCompletionOr<Value> get_by_id(VM& vm, Optional<IdentifierTableIndex> base_identifier, IdentifierTableIndex property, Value base_value, Value this_value, PropertyLookupCache& cache, Executable const& executable) { if constexpr (mode == GetByIdMode::Length) { if (base_value.is_string()) { return Value(base_value.as_string().utf16_string().length_in_code_units()); } } auto base_obj = TRY(base_object_for_get(vm, base_value, base_identifier, property, executable)); if constexpr (mode == GetByIdMode::Length) { // OPTIMIZATION: Fast path for the magical "length" property on Array objects. if (base_obj->has_magical_length_property()) { return Value { base_obj->indexed_properties().array_like_size() }; } } auto& shape = base_obj->shape(); if (cache.prototype) { // OPTIMIZATION: If the prototype chain hasn't been mutated in a way that would invalidate the cache, we can use it. bool can_use_cache = [&]() -> bool { if (&shape != cache.shape) return false; if (!cache.prototype_chain_validity) return false; if (!cache.prototype_chain_validity->is_valid()) return false; return true; }(); if (can_use_cache) { auto value = cache.prototype->get_direct(cache.property_offset.value()); if (value.is_accessor()) return TRY(call(vm, value.as_accessor().getter(), this_value)); return value; } } else if (&shape == cache.shape) { // OPTIMIZATION: If the shape of the object hasn't changed, we can use the cached property offset. auto value = base_obj->get_direct(cache.property_offset.value()); if (value.is_accessor()) return TRY(call(vm, value.as_accessor().getter(), this_value)); return value; } CacheablePropertyMetadata cacheable_metadata; auto value = TRY(base_obj->internal_get(executable.get_identifier(property), this_value, &cacheable_metadata)); if (cacheable_metadata.type == CacheablePropertyMetadata::Type::OwnProperty) { cache = {}; cache.shape = shape; cache.property_offset = cacheable_metadata.property_offset.value(); } else if (cacheable_metadata.type == CacheablePropertyMetadata::Type::InPrototypeChain) { cache = {}; cache.shape = &base_obj->shape(); cache.property_offset = cacheable_metadata.property_offset.value(); cache.prototype = *cacheable_metadata.prototype; cache.prototype_chain_validity = *cacheable_metadata.prototype->shape().prototype_chain_validity(); } return value; } inline ThrowCompletionOr<Value> get_by_value(VM& vm, Optional<IdentifierTableIndex> base_identifier, Value base_value, Value property_key_value, Executable const& executable) { // OPTIMIZATION: Fast path for simple Int32 indexes in array-like objects. if (base_value.is_object() && property_key_value.is_int32() && property_key_value.as_i32() >= 0) { auto& object = base_value.as_object(); auto index = static_cast<u32>(property_key_value.as_i32()); auto const* object_storage = object.indexed_properties().storage(); // For "non-typed arrays": if (!object.may_interfere_with_indexed_property_access() && object_storage) { auto maybe_value = [&] { if (object_storage->is_simple_storage()) return static_cast<SimpleIndexedPropertyStorage const*>(object_storage)->inline_get(index); else return static_cast<GenericIndexedPropertyStorage const*>(object_storage)->get(index); }(); if (maybe_value.has_value()) { auto value = maybe_value->value; if (!value.is_accessor()) return value; } } // For typed arrays: if (object.is_typed_array()) { auto& typed_array = static_cast<TypedArrayBase&>(object); auto canonical_index = CanonicalIndex { CanonicalIndex::Type::Index, index }; if (is_valid_integer_index(typed_array, canonical_index)) { switch (typed_array.kind()) { case TypedArrayBase::Kind::Uint8Array: return fast_typed_array_get_element<u8>(typed_array, index); case TypedArrayBase::Kind::Uint16Array: return fast_typed_array_get_element<u16>(typed_array, index); case TypedArrayBase::Kind::Uint32Array: return fast_typed_array_get_element<u32>(typed_array, index); case TypedArrayBase::Kind::Int8Array: return fast_typed_array_get_element<i8>(typed_array, index); case TypedArrayBase::Kind::Int16Array: return fast_typed_array_get_element<i16>(typed_array, index); case TypedArrayBase::Kind::Int32Array: return fast_typed_array_get_element<i32>(typed_array, index); case TypedArrayBase::Kind::Uint8ClampedArray: return fast_typed_array_get_element<u8>(typed_array, index); case TypedArrayBase::Kind::Float16Array: return fast_typed_array_get_element<f16>(typed_array, index); case TypedArrayBase::Kind::Float32Array: return fast_typed_array_get_element<float>(typed_array, index); case TypedArrayBase::Kind::Float64Array: return fast_typed_array_get_element<double>(typed_array, index); default: // FIXME: Support more TypedArray kinds. break; } } switch (typed_array.kind()) { #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName, Type) \ case TypedArrayBase::Kind::ClassName: \ return typed_array_get_element<Type>(typed_array, canonical_index); JS_ENUMERATE_TYPED_ARRAYS #undef __JS_ENUMERATE } } } auto object = TRY(base_object_for_get(vm, base_value, base_identifier, property_key_value, executable)); auto property_key = TRY(property_key_value.to_property_key(vm)); if (base_value.is_string()) { auto string_value = TRY(base_value.as_string().get(vm, property_key)); if (string_value.has_value()) return *string_value; } return TRY(object->internal_get(property_key, base_value)); } inline ThrowCompletionOr<Value> get_global(Interpreter& interpreter, IdentifierTableIndex identifier_index, GlobalVariableCache& cache) { auto& vm = interpreter.vm(); auto& binding_object = interpreter.global_object(); auto& declarative_record = interpreter.global_declarative_environment(); auto& shape = binding_object.shape(); if (cache.environment_serial_number == declarative_record.environment_serial_number()) { // OPTIMIZATION: For global var bindings, if the shape of the global object hasn't changed, // we can use the cached property offset. if (&shape == cache.shape) { auto value = binding_object.get_direct(cache.property_offset.value()); if (value.is_accessor()) return TRY(call(vm, value.as_accessor().getter(), js_undefined())); return value; } // OPTIMIZATION: For global lexical bindings, if the global declarative environment hasn't changed, // we can use the cached environment binding index. if (cache.environment_binding_index.has_value()) return declarative_record.get_binding_value_direct(vm, cache.environment_binding_index.value()); } cache.environment_serial_number = declarative_record.environment_serial_number(); auto& identifier = interpreter.current_executable().get_identifier(identifier_index); if (vm.running_execution_context().script_or_module.has<GC::Ref<Module>>()) { // NOTE: GetGlobal is used to access variables stored in the module environment and global environment. // The module environment is checked first since it precedes the global environment in the environment chain. auto& module_environment = *vm.running_execution_context().script_or_module.get<GC::Ref<Module>>()->environment(); if (TRY(module_environment.has_binding(identifier))) { // TODO: Cache offset of binding value return TRY(module_environment.get_binding_value(vm, identifier, vm.in_strict_mode())); } } Optional<size_t> offset; if (TRY(declarative_record.has_binding(identifier, &offset))) { cache.environment_binding_index = static_cast<u32>(offset.value()); return TRY(declarative_record.get_binding_value(vm, identifier, vm.in_strict_mode())); } if (TRY(binding_object.has_property(identifier))) { CacheablePropertyMetadata cacheable_metadata; auto value = TRY(binding_object.internal_get(identifier, js_undefined(), &cacheable_metadata)); if (cacheable_metadata.type == CacheablePropertyMetadata::Type::OwnProperty) { cache.shape = shape; cache.property_offset = cacheable_metadata.property_offset.value(); } return value; } return vm.throw_completion<ReferenceError>(ErrorType::UnknownIdentifier, identifier); } inline ThrowCompletionOr<void> put_by_property_key(VM& vm, Value base, Value this_value, Value value, Optional<DeprecatedFlyString const&> const& base_identifier, PropertyKey name, Op::PropertyKind kind, PropertyLookupCache* cache = nullptr) { // Better error message than to_object would give if (vm.in_strict_mode() && base.is_nullish()) return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, base.to_string_without_side_effects()); // a. Let baseObj be ? ToObject(V.[[Base]]). auto maybe_object = base.to_object(vm); if (maybe_object.is_error()) return throw_null_or_undefined_property_access(vm, base, base_identifier, name); auto object = maybe_object.release_value(); if (kind == Op::PropertyKind::Getter || kind == Op::PropertyKind::Setter) { // The generator should only pass us functions for getters and setters. VERIFY(value.is_function()); } switch (kind) { case Op::PropertyKind::Getter: { auto& function = value.as_function(); if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function)) static_cast<ECMAScriptFunctionObject*>(&function)->set_name(ByteString::formatted("get {}", name)); object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable); break; } case Op::PropertyKind::Setter: { auto& function = value.as_function(); if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function)) static_cast<ECMAScriptFunctionObject*>(&function)->set_name(ByteString::formatted("set {}", name)); object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable); break; } case Op::PropertyKind::KeyValue: { if (cache && cache->shape == &object->shape()) { object->put_direct(*cache->property_offset, value); return {}; } CacheablePropertyMetadata cacheable_metadata; bool succeeded = TRY(object->internal_set(name, value, this_value, &cacheable_metadata)); if (succeeded && cache && cacheable_metadata.type == CacheablePropertyMetadata::Type::OwnProperty) { cache->shape = object->shape(); cache->property_offset = cacheable_metadata.property_offset.value(); } if (!succeeded && vm.in_strict_mode()) { if (base.is_object()) return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, base.to_string_without_side_effects()); return vm.throw_completion<TypeError>(ErrorType::ReferencePrimitiveSetProperty, name, base.typeof_(vm)->utf8_string(), base.to_string_without_side_effects()); } break; } case Op::PropertyKind::DirectKeyValue: object->define_direct_property(name, value, Attribute::Enumerable | Attribute::Writable | Attribute::Configurable); break; case Op::PropertyKind::ProtoSetter: if (value.is_object() || value.is_null()) MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr)); break; } return {}; } inline ThrowCompletionOr<Value> perform_call(Interpreter& interpreter, Value this_value, Op::CallType call_type, Value callee, ReadonlySpan<Value> argument_values) { auto& vm = interpreter.vm(); auto& function = callee.as_function(); Value return_value; if (call_type == Op::CallType::DirectEval) { if (callee == interpreter.realm().intrinsics().eval_function()) return_value = TRY(perform_eval(vm, !argument_values.is_empty() ? argument_values[0].value_or(JS::js_undefined()) : js_undefined(), vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct)); else return_value = TRY(JS::call(vm, function, this_value, argument_values)); } else if (call_type == Op::CallType::Call) return_value = TRY(JS::call(vm, function, this_value, argument_values)); else return_value = TRY(construct(vm, function, argument_values)); return return_value; } static inline Completion throw_type_error_for_callee(Bytecode::Interpreter& interpreter, Value callee, StringView callee_type, Optional<StringTableIndex> const& expression_string) { auto& vm = interpreter.vm(); if (expression_string.has_value()) return vm.throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), callee_type, interpreter.current_executable().get_string(expression_string->value())); return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), callee_type); } inline ThrowCompletionOr<void> throw_if_needed_for_call(Interpreter& interpreter, Value callee, Op::CallType call_type, Optional<StringTableIndex> const& expression_string) { if ((call_type == Op::CallType::Call || call_type == Op::CallType::DirectEval) && !callee.is_function()) return throw_type_error_for_callee(interpreter, callee, "function"sv, expression_string); if (call_type == Op::CallType::Construct && !callee.is_constructor()) return throw_type_error_for_callee(interpreter, callee, "constructor"sv, expression_string); return {}; } inline Value new_function(VM& vm, FunctionNode const& function_node, Optional<IdentifierTableIndex> const& lhs_name, Optional<Operand> const& home_object) { Value value; if (!function_node.has_name()) { DeprecatedFlyString name = {}; if (lhs_name.has_value()) name = vm.bytecode_interpreter().current_executable().get_identifier(lhs_name.value()); value = function_node.instantiate_ordinary_function_expression(vm, name); } else { value = ECMAScriptFunctionObject::create(*vm.current_realm(), function_node.name(), function_node.source_text(), function_node.body(), function_node.parameters(), function_node.function_length(), function_node.local_variables_names(), vm.lexical_environment(), vm.running_execution_context().private_environment, function_node.kind(), function_node.is_strict_mode(), function_node.parsing_insights(), function_node.is_arrow_function()); } if (home_object.has_value()) { auto home_object_value = vm.bytecode_interpreter().get(home_object.value()); static_cast<ECMAScriptFunctionObject&>(value.as_function()).set_home_object(&home_object_value.as_object()); } return value; } inline ThrowCompletionOr<void> put_by_value(VM& vm, Value base, Optional<DeprecatedFlyString const&> const& base_identifier, Value property_key_value, Value value, Op::PropertyKind kind) { // OPTIMIZATION: Fast path for simple Int32 indexes in array-like objects. if ((kind == Op::PropertyKind::KeyValue || kind == Op::PropertyKind::DirectKeyValue) && base.is_object() && property_key_value.is_int32() && property_key_value.as_i32() >= 0) { auto& object = base.as_object(); auto* storage = object.indexed_properties().storage(); auto index = static_cast<u32>(property_key_value.as_i32()); // For "non-typed arrays": if (storage && storage->is_simple_storage() && !object.may_interfere_with_indexed_property_access()) { auto maybe_value = storage->get(index); if (maybe_value.has_value()) { auto existing_value = maybe_value->value; if (!existing_value.is_accessor()) { storage->put(index, value); return {}; } } } // For typed arrays: if (object.is_typed_array()) { auto& typed_array = static_cast<TypedArrayBase&>(object); auto canonical_index = CanonicalIndex { CanonicalIndex::Type::Index, index }; if (is_valid_integer_index(typed_array, canonical_index)) { if (value.is_int32()) { switch (typed_array.kind()) { case TypedArrayBase::Kind::Uint8Array: fast_typed_array_set_element<u8>(typed_array, index, static_cast<u8>(value.as_i32())); return {}; case TypedArrayBase::Kind::Uint16Array: fast_typed_array_set_element<u16>(typed_array, index, static_cast<u16>(value.as_i32())); return {}; case TypedArrayBase::Kind::Uint32Array: fast_typed_array_set_element<u32>(typed_array, index, static_cast<u32>(value.as_i32())); return {}; case TypedArrayBase::Kind::Int8Array: fast_typed_array_set_element<i8>(typed_array, index, static_cast<i8>(value.as_i32())); return {}; case TypedArrayBase::Kind::Int16Array: fast_typed_array_set_element<i16>(typed_array, index, static_cast<i16>(value.as_i32())); return {}; case TypedArrayBase::Kind::Int32Array: fast_typed_array_set_element<i32>(typed_array, index, value.as_i32()); return {}; case TypedArrayBase::Kind::Uint8ClampedArray: fast_typed_array_set_element<u8>(typed_array, index, clamp(value.as_i32(), 0, 255)); return {}; default: break; } } else if (value.is_double()) { switch (typed_array.kind()) { case TypedArrayBase::Kind::Float16Array: fast_typed_array_set_element<f16>(typed_array, index, static_cast<f16>(value.as_double())); return {}; case TypedArrayBase::Kind::Float32Array: fast_typed_array_set_element<float>(typed_array, index, static_cast<float>(value.as_double())); return {}; case TypedArrayBase::Kind::Float64Array: fast_typed_array_set_element<double>(typed_array, index, value.as_double()); return {}; default: break; } } // FIXME: Support more TypedArray kinds. } if (typed_array.kind() == TypedArrayBase::Kind::Uint32Array && value.is_integral_number()) { auto integer = value.as_double(); if (AK::is_within_range<u32>(integer) && is_valid_integer_index(typed_array, canonical_index)) { fast_typed_array_set_element<u32>(typed_array, index, static_cast<u32>(integer)); return {}; } } switch (typed_array.kind()) { #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName, Type) \ case TypedArrayBase::Kind::ClassName: \ return typed_array_set_element<Type>(typed_array, canonical_index, value); JS_ENUMERATE_TYPED_ARRAYS #undef __JS_ENUMERATE } return {}; } } auto property_key = TRY(property_key_value.to_property_key(vm)); TRY(put_by_property_key(vm, base, base, value, base_identifier, property_key, kind)); return {}; } struct CalleeAndThis { Value callee; Value this_value; }; inline ThrowCompletionOr<CalleeAndThis> get_callee_and_this_from_environment(Bytecode::Interpreter& interpreter, DeprecatedFlyString const& name, EnvironmentCoordinate& cache) { auto& vm = interpreter.vm(); Value callee = js_undefined(); Value this_value = js_undefined(); if (cache.is_valid()) { auto const* environment = interpreter.running_execution_context().lexical_environment.ptr(); for (size_t i = 0; i < cache.hops; ++i) environment = environment->outer_environment(); if (!environment->is_permanently_screwed_by_eval()) { callee = TRY(static_cast<DeclarativeEnvironment const&>(*environment).get_binding_value_direct(vm, cache.index)); this_value = js_undefined(); if (auto base_object = environment->with_base_object()) this_value = base_object; return CalleeAndThis { .callee = callee, .this_value = this_value, }; } cache = {}; } auto reference = TRY(vm.resolve_binding(name)); if (reference.environment_coordinate().has_value()) cache = reference.environment_coordinate().value(); callee = TRY(reference.get_value(vm)); if (reference.is_property_reference()) { this_value = reference.get_this_value(); } else { if (reference.is_environment_reference()) { if (auto base_object = reference.base_environment().with_base_object(); base_object != nullptr) this_value = base_object; } } return CalleeAndThis { .callee = callee, .this_value = this_value, }; } // 13.2.7.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation inline Value new_regexp(VM& vm, ParsedRegex const& parsed_regex, ByteString const& pattern, ByteString const& flags) { // 1. Let pattern be CodePointsToString(BodyText of RegularExpressionLiteral). // 2. Let flags be CodePointsToString(FlagText of RegularExpressionLiteral). // 3. Return ! RegExpCreate(pattern, flags). auto& realm = *vm.current_realm(); Regex<ECMA262> regex(parsed_regex.regex, parsed_regex.pattern, parsed_regex.flags); // NOTE: We bypass RegExpCreate and subsequently RegExpAlloc as an optimization to use the already parsed values. auto regexp_object = RegExpObject::create(realm, move(regex), pattern, flags); // RegExpAlloc has these two steps from the 'Legacy RegExp features' proposal. regexp_object->set_realm(realm); // We don't need to check 'If SameValue(newTarget, thisRealm.[[Intrinsics]].[[%RegExp%]]) is true' // here as we know RegExpCreate calls RegExpAlloc with %RegExp% for newTarget. regexp_object->set_legacy_features_enabled(true); return regexp_object; } // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation inline GC::MarkedVector<Value> argument_list_evaluation(VM& vm, Value arguments) { // Note: Any spreading and actual evaluation is handled in preceding opcodes // Note: The spec uses the concept of a list, while we create a temporary array // in the preceding opcodes, so we have to convert in a manner that is not // visible to the user GC::MarkedVector<Value> argument_values { vm.heap() }; auto& argument_array = arguments.as_array(); auto array_length = argument_array.indexed_properties().array_like_size(); argument_values.ensure_capacity(array_length); for (size_t i = 0; i < array_length; ++i) { if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value()) argument_values.append(maybe_value.release_value().value); else argument_values.append(js_undefined()); } return argument_values; } inline ThrowCompletionOr<void> create_variable(VM& vm, DeprecatedFlyString const& name, Op::EnvironmentMode mode, bool is_global, bool is_immutable, bool is_strict) { if (mode == Op::EnvironmentMode::Lexical) { VERIFY(!is_global); // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us. // Instead of crashing in there, we'll just raise an exception here. if (TRY(vm.lexical_environment()->has_binding(name))) return vm.throw_completion<InternalError>(TRY_OR_THROW_OOM(vm, String::formatted("Lexical environment already has binding '{}'", name))); if (is_immutable) return vm.lexical_environment()->create_immutable_binding(vm, name, is_strict); return vm.lexical_environment()->create_mutable_binding(vm, name, is_strict); } if (!is_global) { if (is_immutable) return vm.variable_environment()->create_immutable_binding(vm, name, is_strict); return vm.variable_environment()->create_mutable_binding(vm, name, is_strict); } // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted". // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode. return verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false); } inline ThrowCompletionOr<ECMAScriptFunctionObject*> new_class(VM& vm, Value super_class, ClassExpression const& class_expression, Optional<IdentifierTableIndex> const& lhs_name, ReadonlySpan<Value> element_keys) { auto& interpreter = vm.bytecode_interpreter(); auto name = class_expression.name(); // NOTE: NewClass expects classEnv to be active lexical environment auto* class_environment = vm.lexical_environment(); vm.running_execution_context().lexical_environment = vm.running_execution_context().saved_lexical_environments.take_last(); Optional<DeprecatedFlyString> binding_name; DeprecatedFlyString class_name; if (!class_expression.has_name() && lhs_name.has_value()) { class_name = interpreter.current_executable().get_identifier(lhs_name.value()); } else { binding_name = name; class_name = name.is_null() ? ""sv : name; } return TRY(class_expression.create_class_constructor(vm, class_environment, vm.lexical_environment(), super_class, element_keys, binding_name, class_name)); } // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation inline ThrowCompletionOr<GC::Ref<Object>> super_call_with_argument_array(VM& vm, Value argument_array, bool is_synthetic) { // 1. Let newTarget be GetNewTarget(). auto new_target = vm.get_new_target(); // 2. Assert: Type(newTarget) is Object. VERIFY(new_target.is_object()); // 3. Let func be GetSuperConstructor(). auto* func = get_super_constructor(vm); // 4. Let argList be ? ArgumentListEvaluation of Arguments. GC::MarkedVector<Value> arg_list { vm.heap() }; if (is_synthetic) { VERIFY(argument_array.is_object() && is<Array>(argument_array.as_object())); auto const& array_value = static_cast<Array const&>(argument_array.as_object()); auto length = MUST(length_of_array_like(vm, array_value)); for (size_t i = 0; i < length; ++i) arg_list.append(array_value.get_without_side_effects(PropertyKey { i })); } else { arg_list = argument_list_evaluation(vm, argument_array); } // 5. If IsConstructor(func) is false, throw a TypeError exception. if (!Value(func).is_constructor()) return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor"); // 6. Let result be ? Construct(func, argList, newTarget). auto result = TRY(construct(vm, static_cast<FunctionObject&>(*func), arg_list.span(), &new_target.as_function())); // 7. Let thisER be GetThisEnvironment(). auto& this_environment = verify_cast<FunctionEnvironment>(*get_this_environment(vm)); // 8. Perform ? thisER.BindThisValue(result). TRY(this_environment.bind_this_value(vm, result)); // 9. Let F be thisER.[[FunctionObject]]. auto& f = this_environment.function_object(); // 10. Assert: F is an ECMAScript function object. // NOTE: This is implied by the strong C++ type. // 11. Perform ? InitializeInstanceElements(result, F). TRY(result->initialize_instance_elements(f)); // 12. Return result. return result; } inline ThrowCompletionOr<GC::Ref<Array>> iterator_to_array(VM& vm, Value iterator) { auto& iterator_record = verify_cast<IteratorRecord>(iterator.as_object()); auto array = MUST(Array::create(*vm.current_realm(), 0)); size_t index = 0; while (true) { auto value = TRY(iterator_step_value(vm, iterator_record)); if (!value.has_value()) return array; MUST(array->create_data_property_or_throw(index, value.release_value())); index++; } } inline ThrowCompletionOr<void> append(VM& vm, Value lhs, Value rhs, bool is_spread) { // Note: This OpCode is used to construct array literals and argument arrays for calls, // containing at least one spread element, // Iterating over such a spread element to unpack it has to be visible by // the user courtesy of // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation // SpreadElement : ... AssignmentExpression // 1. Let spreadRef be ? Evaluation of AssignmentExpression. // 2. Let spreadObj be ? GetValue(spreadRef). // 3. Let iteratorRecord be ? GetIterator(spreadObj). // 4. Repeat, // a. Let next be ? IteratorStep(iteratorRecord). // b. If next is false, return nextIndex. // c. Let nextValue be ? IteratorValue(next). // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue). // e. Set nextIndex to nextIndex + 1. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation // ArgumentList : ... AssignmentExpression // 1. Let list be a new empty List. // 2. Let spreadRef be ? Evaluation of AssignmentExpression. // 3. Let spreadObj be ? GetValue(spreadRef). // 4. Let iteratorRecord be ? GetIterator(spreadObj). // 5. Repeat, // a. Let next be ? IteratorStep(iteratorRecord). // b. If next is false, return list. // c. Let nextArg be ? IteratorValue(next). // d. Append nextArg to list. // ArgumentList : ArgumentList , ... AssignmentExpression // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList. // 2. Let spreadRef be ? Evaluation of AssignmentExpression. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)). // 4. Repeat, // a. Let next be ? IteratorStep(iteratorRecord). // b. If next is false, return precedingArgs. // c. Let nextArg be ? IteratorValue(next). // d. Append nextArg to precedingArgs. // Note: We know from codegen, that lhs is a plain array with only indexed properties auto& lhs_array = lhs.as_array(); auto lhs_size = lhs_array.indexed_properties().array_like_size(); if (is_spread) { // ...rhs size_t i = lhs_size; TRY(get_iterator_values(vm, rhs, [&i, &lhs_array](Value iterator_value) -> Optional<Completion> { lhs_array.indexed_properties().put(i, iterator_value, default_attributes); ++i; return {}; })); } else { lhs_array.indexed_properties().put(lhs_size, rhs, default_attributes); } return {}; } inline ThrowCompletionOr<Value> delete_by_id(Bytecode::Interpreter& interpreter, Value base, IdentifierTableIndex property) { auto& vm = interpreter.vm(); auto const& identifier = interpreter.current_executable().get_identifier(property); bool strict = vm.in_strict_mode(); auto reference = Reference { base, identifier, {}, strict }; return TRY(reference.delete_(vm)); } inline ThrowCompletionOr<Value> delete_by_value(Bytecode::Interpreter& interpreter, Value base, Value property_key_value) { auto& vm = interpreter.vm(); auto property_key = TRY(property_key_value.to_property_key(vm)); bool strict = vm.in_strict_mode(); auto reference = Reference { base, property_key, {}, strict }; return Value(TRY(reference.delete_(vm))); } inline ThrowCompletionOr<Value> delete_by_value_with_this(Bytecode::Interpreter& interpreter, Value base, Value property_key_value, Value this_value) { auto& vm = interpreter.vm(); auto property_key = TRY(property_key_value.to_property_key(vm)); bool strict = vm.in_strict_mode(); auto reference = Reference { base, property_key, this_value, strict }; return Value(TRY(reference.delete_(vm))); } // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties inline ThrowCompletionOr<Object*> get_object_property_iterator(VM& vm, Value value) { // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants: // 1- Returned property keys do not include keys that are Symbols // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration // 4- A property name will be returned by the iterator's next method at most once in any enumeration. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively; // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations). auto object = TRY(value.to_object(vm)); // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys, // so we just keep the order consistent anyway. OrderedHashTable<PropertyKey> properties; OrderedHashTable<PropertyKey> non_enumerable_properties; HashTable<GC::Ref<Object>> seen_objects; // Collect all keys immediately (invariant no. 5) for (auto object_to_check = GC::Ptr { object.ptr() }; object_to_check && !seen_objects.contains(*object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) { seen_objects.set(*object_to_check); for (auto& key : TRY(object_to_check->internal_own_property_keys())) { if (key.is_symbol()) continue; auto property_key = TRY(PropertyKey::from_value(vm, key)); // If there is a non-enumerable property higher up the prototype chain with the same key, // we mustn't include this property even if it's enumerable (invariant no. 5 and 6) if (non_enumerable_properties.contains(property_key)) continue; if (properties.contains(property_key)) continue; auto descriptor = TRY(object_to_check->internal_get_own_property(property_key)); if (!*descriptor->enumerable) non_enumerable_properties.set(move(property_key)); else properties.set(move(property_key)); } } auto& realm = *vm.current_realm(); auto callback = NativeFunction::create( *vm.current_realm(), [items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> { auto& realm = *vm.current_realm(); auto iterated_object_value = vm.this_value(); if (!iterated_object_value.is_object()) return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next"sv); auto& iterated_object = iterated_object_value.as_object(); auto result_object = Object::create(realm, nullptr); while (true) { if (items.is_empty()) { result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes); return result_object; } auto key = items.take_first(); // If the property is deleted, don't include it (invariant no. 2) if (!TRY(iterated_object.has_property(key))) continue; result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes); if (key.is_number()) result_object->define_direct_property(vm.names.value, PrimitiveString::create(vm, String::number(key.as_number())), default_attributes); else if (key.is_string()) result_object->define_direct_property(vm.names.value, PrimitiveString::create(vm, key.as_string()), default_attributes); else VERIFY_NOT_REACHED(); // We should not have non-string/number keys. return result_object; } }, 1, vm.names.next); return realm.create<IteratorRecord>(realm, object, callback, false).ptr(); } ByteString Instruction::to_byte_string(Bytecode::Executable const& executable) const { #define __BYTECODE_OP(op) \ case Instruction::Type::op: \ return static_cast<Bytecode::Op::op const&>(*this).to_byte_string_impl(executable); switch (type()) { ENUMERATE_BYTECODE_OPS(__BYTECODE_OP) default: VERIFY_NOT_REACHED(); } #undef __BYTECODE_OP } } namespace JS::Bytecode::Op { static void dump_object(Object& o, HashTable<Object const*>& seen, int indent = 0) { if (seen.contains(&o)) return; seen.set(&o); for (auto& it : o.shape().property_table()) { auto value = o.get_direct(it.value.offset); dbgln("{} {} -> {}", String::repeated(' ', indent).release_value(), it.key.to_display_string(), value); if (value.is_object()) { dump_object(value.as_object(), seen, indent + 2); } } } void Dump::execute_impl(Bytecode::Interpreter& interpreter) const { auto value = interpreter.get(m_value); dbgln("(DUMP) {}: {}", m_text, value); if (value.is_object()) { HashTable<Object const*> seen; dump_object(value.as_object(), seen); } } #define JS_DEFINE_EXECUTE_FOR_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \ ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ auto lhs = interpreter.get(m_lhs); \ auto rhs = interpreter.get(m_rhs); \ interpreter.set(m_dst, TRY(op_snake_case(vm, lhs, rhs))); \ return {}; \ } #define JS_DEFINE_TO_BYTE_STRING_FOR_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \ ByteString OpTitleCase::to_byte_string_impl(Bytecode::Executable const& executable) const \ { \ return ByteString::formatted(#OpTitleCase " {}, {}, {}", \ format_operand("dst"sv, m_dst, executable), \ format_operand("lhs"sv, m_lhs, executable), \ format_operand("rhs"sv, m_rhs, executable)); \ } JS_ENUMERATE_COMMON_BINARY_OPS_WITHOUT_FAST_PATH(JS_DEFINE_EXECUTE_FOR_COMMON_BINARY_OP) JS_ENUMERATE_COMMON_BINARY_OPS_WITHOUT_FAST_PATH(JS_DEFINE_TO_BYTE_STRING_FOR_COMMON_BINARY_OP) JS_ENUMERATE_COMMON_BINARY_OPS_WITH_FAST_PATH(JS_DEFINE_TO_BYTE_STRING_FOR_COMMON_BINARY_OP) ThrowCompletionOr<void> Add::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { if (!Checked<i32>::addition_would_overflow(lhs.as_i32(), rhs.as_i32())) { interpreter.set(m_dst, Value(lhs.as_i32() + rhs.as_i32())); return {}; } } interpreter.set(m_dst, Value(lhs.as_double() + rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(add(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> Mul::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { if (!Checked<i32>::multiplication_would_overflow(lhs.as_i32(), rhs.as_i32())) { interpreter.set(m_dst, Value(lhs.as_i32() * rhs.as_i32())); return {}; } } interpreter.set(m_dst, Value(lhs.as_double() * rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(mul(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> Sub::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { if (!Checked<i32>::subtraction_would_overflow(lhs.as_i32(), rhs.as_i32())) { interpreter.set(m_dst, Value(lhs.as_i32() - rhs.as_i32())); return {}; } } interpreter.set(m_dst, Value(lhs.as_double() - rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(sub(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> BitwiseXor::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() ^ rhs.as_i32())); return {}; } interpreter.set(m_dst, TRY(bitwise_xor(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> BitwiseAnd::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() & rhs.as_i32())); return {}; } interpreter.set(m_dst, TRY(bitwise_and(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> BitwiseOr::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() | rhs.as_i32())); return {}; } interpreter.set(m_dst, TRY(bitwise_or(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> UnsignedRightShift::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_int32() && rhs.is_int32()) { auto const shift_count = static_cast<u32>(rhs.as_i32()) % 32; interpreter.set(m_dst, Value(static_cast<u32>(lhs.as_i32()) >> shift_count)); return {}; } interpreter.set(m_dst, TRY(unsigned_right_shift(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> RightShift::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_int32() && rhs.is_int32()) { auto const shift_count = static_cast<u32>(rhs.as_i32()) % 32; interpreter.set(m_dst, Value(lhs.as_i32() >> shift_count)); return {}; } interpreter.set(m_dst, TRY(right_shift(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> LeftShift::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_int32() && rhs.is_int32()) { auto const shift_count = static_cast<u32>(rhs.as_i32()) % 32; interpreter.set(m_dst, Value(lhs.as_i32() << shift_count)); return {}; } interpreter.set(m_dst, TRY(left_shift(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> LessThan::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() < rhs.as_i32())); return {}; } interpreter.set(m_dst, Value(lhs.as_double() < rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(less_than(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> LessThanEquals::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() <= rhs.as_i32())); return {}; } interpreter.set(m_dst, Value(lhs.as_double() <= rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(less_than_equals(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> GreaterThan::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() > rhs.as_i32())); return {}; } interpreter.set(m_dst, Value(lhs.as_double() > rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(greater_than(vm, lhs, rhs))); return {}; } ThrowCompletionOr<void> GreaterThanEquals::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const lhs = interpreter.get(m_lhs); auto const rhs = interpreter.get(m_rhs); if (lhs.is_number() && rhs.is_number()) { if (lhs.is_int32() && rhs.is_int32()) { interpreter.set(m_dst, Value(lhs.as_i32() >= rhs.as_i32())); return {}; } interpreter.set(m_dst, Value(lhs.as_double() >= rhs.as_double())); return {}; } interpreter.set(m_dst, TRY(greater_than_equals(vm, lhs, rhs))); return {}; } static ThrowCompletionOr<Value> not_(VM&, Value value) { return Value(!value.to_boolean()); } static ThrowCompletionOr<Value> typeof_(VM& vm, Value value) { return value.typeof_(vm); } #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \ ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ interpreter.set(dst(), TRY(op_snake_case(vm, interpreter.get(src())))); \ return {}; \ } \ ByteString OpTitleCase::to_byte_string_impl(Bytecode::Executable const& executable) const \ { \ return ByteString::formatted(#OpTitleCase " {}, {}", \ format_operand("dst"sv, dst(), executable), \ format_operand("src"sv, src(), executable)); \ } JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP) void NewArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto array = MUST(Array::create(interpreter.realm(), 0)); for (size_t i = 0; i < m_element_count; i++) { array->indexed_properties().put(i, interpreter.get(m_elements[i]), default_attributes); } interpreter.set(dst(), array); } void NewPrimitiveArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto array = MUST(Array::create(interpreter.realm(), 0)); for (size_t i = 0; i < m_element_count; i++) array->indexed_properties().put(i, m_elements[i], default_attributes); interpreter.set(dst(), array); } void AddPrivateName::execute_impl(Bytecode::Interpreter& interpreter) const { auto const& name = interpreter.current_executable().get_identifier(m_name); interpreter.vm().running_execution_context().private_environment->add_private_name(name); } ThrowCompletionOr<void> ArrayAppend::execute_impl(Bytecode::Interpreter& interpreter) const { return append(interpreter.vm(), interpreter.get(dst()), interpreter.get(src()), m_is_spread); } ThrowCompletionOr<void> ImportCall::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto specifier = interpreter.get(m_specifier); auto options_value = interpreter.get(m_options); interpreter.set(dst(), TRY(perform_import_call(vm, specifier, options_value))); return {}; } ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), TRY(iterator_to_array(interpreter.vm(), interpreter.get(iterator())))); return {}; } void NewObject::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& realm = *vm.current_realm(); interpreter.set(dst(), Object::create(realm, realm.intrinsics().object_prototype())); } void NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), new_regexp( interpreter.vm(), interpreter.current_executable().regex_table->get(m_regex_index), interpreter.current_executable().get_string(m_source_index), interpreter.current_executable().get_string(m_flags_index))); } #define JS_DEFINE_NEW_BUILTIN_ERROR_OP(ErrorName) \ void New##ErrorName::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ auto& realm = *vm.current_realm(); \ interpreter.set(dst(), ErrorName::create(realm, interpreter.current_executable().get_string(m_error_string))); \ } \ ByteString New##ErrorName::to_byte_string_impl(Bytecode::Executable const& executable) const \ { \ return ByteString::formatted("New" #ErrorName " {}, {}", \ format_operand("dst"sv, m_dst, executable), \ executable.string_table->get(m_error_string)); \ } JS_ENUMERATE_NEW_BUILTIN_ERROR_OPS(JS_DEFINE_NEW_BUILTIN_ERROR_OP) ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& realm = *vm.current_realm(); auto from_object = interpreter.get(m_from_object); auto to_object = Object::create(realm, realm.intrinsics().object_prototype()); HashTable<PropertyKey> excluded_names; for (size_t i = 0; i < m_excluded_names_count; ++i) { excluded_names.set(TRY(interpreter.get(m_excluded_names[i]).to_property_key(vm))); } TRY(to_object->copy_data_properties(vm, from_object, excluded_names)); interpreter.set(dst(), to_object); return {}; } ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto string = TRY(interpreter.get(src()).to_primitive_string(vm)); interpreter.set(dst(), PrimitiveString::create(vm, interpreter.get(dst()).as_string(), string)); return {}; } ThrowCompletionOr<void> GetBinding::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& executable = interpreter.current_executable(); if (m_cache.is_valid()) { auto const* environment = interpreter.running_execution_context().lexical_environment.ptr(); for (size_t i = 0; i < m_cache.hops; ++i) environment = environment->outer_environment(); if (!environment->is_permanently_screwed_by_eval()) { interpreter.set(dst(), TRY(static_cast<DeclarativeEnvironment const&>(*environment).get_binding_value_direct(vm, m_cache.index))); return {}; } m_cache = {}; } auto reference = TRY(vm.resolve_binding(executable.get_identifier(m_identifier))); if (reference.environment_coordinate().has_value()) m_cache = reference.environment_coordinate().value(); interpreter.set(dst(), TRY(reference.get_value(vm))); return {}; } ThrowCompletionOr<void> GetCalleeAndThisFromEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee_and_this = TRY(get_callee_and_this_from_environment( interpreter, interpreter.current_executable().get_identifier(m_identifier), m_cache)); interpreter.set(m_callee, callee_and_this.callee); interpreter.set(m_this_value, callee_and_this.this_value); return {}; } ThrowCompletionOr<void> GetGlobal::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), TRY(get_global(interpreter, m_identifier, interpreter.current_executable().global_variable_caches[m_cache_index]))); return {}; } ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& string = interpreter.current_executable().get_identifier(m_identifier); auto reference = TRY(vm.resolve_binding(string)); interpreter.set(dst(), Value(TRY(reference.delete_(vm)))); return {}; } void CreateLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto make_and_swap_envs = [&](auto& old_environment) { auto declarative_environment = new_declarative_environment(*old_environment).ptr(); declarative_environment->ensure_capacity(m_capacity); GC::Ptr<Environment> environment = declarative_environment; swap(old_environment, environment); return environment; }; auto& running_execution_context = interpreter.running_execution_context(); running_execution_context.saved_lexical_environments.append(make_and_swap_envs(running_execution_context.lexical_environment)); } void CreatePrivateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& running_execution_context = interpreter.vm().running_execution_context(); auto outer_private_environment = running_execution_context.private_environment; running_execution_context.private_environment = new_private_environment(interpreter.vm(), outer_private_environment); } void CreateVariableEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& running_execution_context = interpreter.running_execution_context(); auto var_environment = new_declarative_environment(*running_execution_context.lexical_environment); var_environment->ensure_capacity(m_capacity); running_execution_context.variable_environment = var_environment; running_execution_context.lexical_environment = var_environment; } ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto object = TRY(interpreter.get(m_object).to_object(interpreter.vm())); interpreter.enter_object_environment(*object); return {}; } void Catch::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.catch_exception(dst()); } void LeaveFinally::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.leave_finally(); } void RestoreScheduledJump::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.restore_scheduled_jump(); } ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto const& name = interpreter.current_executable().get_identifier(m_identifier); return create_variable(interpreter.vm(), name, m_mode, m_is_global, m_is_immutable, m_is_strict); } ThrowCompletionOr<void> CreateRestParams::execute_impl(Bytecode::Interpreter& interpreter) const { auto const& arguments = interpreter.running_execution_context().arguments; auto arguments_count = interpreter.running_execution_context().passed_argument_count; auto array = MUST(Array::create(interpreter.realm(), 0)); for (size_t rest_index = m_rest_index; rest_index < arguments_count; ++rest_index) array->indexed_properties().append(arguments[rest_index]); interpreter.set(m_dst, array); return {}; } ThrowCompletionOr<void> CreateArguments::execute_impl(Bytecode::Interpreter& interpreter) const { auto const& function = interpreter.running_execution_context().function; auto const& arguments = interpreter.running_execution_context().arguments; auto const& environment = interpreter.running_execution_context().lexical_environment; auto passed_arguments = ReadonlySpan<Value> { arguments.data(), interpreter.running_execution_context().passed_argument_count }; Object* arguments_object; if (m_kind == Kind::Mapped) { arguments_object = create_mapped_arguments_object(interpreter.vm(), *function, function->formal_parameters(), passed_arguments, *environment); } else { arguments_object = create_unmapped_arguments_object(interpreter.vm(), passed_arguments); } if (m_dst.has_value()) { interpreter.set(*m_dst, arguments_object); return {}; } if (m_is_immutable) { MUST(environment->create_immutable_binding(interpreter.vm(), interpreter.vm().names.arguments.as_string(), false)); } else { MUST(environment->create_mutable_binding(interpreter.vm(), interpreter.vm().names.arguments.as_string(), false)); } MUST(environment->initialize_binding(interpreter.vm(), interpreter.vm().names.arguments.as_string(), arguments_object, Environment::InitializeBindingHint::Normal)); return {}; } template<EnvironmentMode environment_mode, BindingInitializationMode initialization_mode> static ThrowCompletionOr<void> initialize_or_set_binding(Interpreter& interpreter, IdentifierTableIndex identifier_index, Value value, EnvironmentCoordinate& cache) { auto& vm = interpreter.vm(); auto* environment = environment_mode == EnvironmentMode::Lexical ? interpreter.running_execution_context().lexical_environment.ptr() : interpreter.running_execution_context().variable_environment.ptr(); if (cache.is_valid()) { for (size_t i = 0; i < cache.hops; ++i) environment = environment->outer_environment(); if (!environment->is_permanently_screwed_by_eval()) { if constexpr (initialization_mode == BindingInitializationMode::Initialize) { TRY(static_cast<DeclarativeEnvironment&>(*environment).initialize_binding_direct(vm, cache.index, value, Environment::InitializeBindingHint::Normal)); } else { TRY(static_cast<DeclarativeEnvironment&>(*environment).set_mutable_binding_direct(vm, cache.index, value, vm.in_strict_mode())); } return {}; } cache = {}; } auto reference = TRY(vm.resolve_binding(interpreter.current_executable().get_identifier(identifier_index), environment)); if (reference.environment_coordinate().has_value()) cache = reference.environment_coordinate().value(); if constexpr (initialization_mode == BindingInitializationMode::Initialize) { TRY(reference.initialize_referenced_binding(vm, value)); } else if (initialization_mode == BindingInitializationMode::Set) { TRY(reference.put_value(vm, value)); } return {}; } ThrowCompletionOr<void> InitializeLexicalBinding::execute_impl(Bytecode::Interpreter& interpreter) const { return initialize_or_set_binding<EnvironmentMode::Lexical, BindingInitializationMode::Initialize>(interpreter, m_identifier, interpreter.get(m_src), m_cache); } ThrowCompletionOr<void> InitializeVariableBinding::execute_impl(Bytecode::Interpreter& interpreter) const { return initialize_or_set_binding<EnvironmentMode::Var, BindingInitializationMode::Initialize>(interpreter, m_identifier, interpreter.get(m_src), m_cache); } ThrowCompletionOr<void> SetLexicalBinding::execute_impl(Bytecode::Interpreter& interpreter) const { return initialize_or_set_binding<EnvironmentMode::Lexical, BindingInitializationMode::Set>(interpreter, m_identifier, interpreter.get(m_src), m_cache); } ThrowCompletionOr<void> SetVariableBinding::execute_impl(Bytecode::Interpreter& interpreter) const { return initialize_or_set_binding<EnvironmentMode::Var, BindingInitializationMode::Set>(interpreter, m_identifier, interpreter.get(m_src), m_cache); } ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.get(base()); auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index]; interpreter.set(dst(), TRY(get_by_id(interpreter.vm(), m_base_identifier, m_property, base_value, base_value, cache, interpreter.current_executable()))); return {}; } ThrowCompletionOr<void> GetByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.get(m_base); auto this_value = interpreter.get(m_this_value); auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index]; interpreter.set(dst(), TRY(get_by_id(interpreter.vm(), {}, m_property, base_value, this_value, cache, interpreter.current_executable()))); return {}; } ThrowCompletionOr<void> GetLength::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.get(base()); auto& executable = interpreter.current_executable(); auto& cache = executable.property_lookup_caches[m_cache_index]; interpreter.set(dst(), TRY(get_by_id<GetByIdMode::Length>(interpreter.vm(), m_base_identifier, *executable.length_identifier, base_value, base_value, cache, executable))); return {}; } ThrowCompletionOr<void> GetLengthWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.get(m_base); auto this_value = interpreter.get(m_this_value); auto& executable = interpreter.current_executable(); auto& cache = executable.property_lookup_caches[m_cache_index]; interpreter.set(dst(), TRY(get_by_id<GetByIdMode::Length>(interpreter.vm(), {}, *executable.length_identifier, base_value, this_value, cache, executable))); return {}; } ThrowCompletionOr<void> GetPrivateById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& name = interpreter.current_executable().get_identifier(m_property); auto base_value = interpreter.get(m_base); auto private_reference = make_private_reference(vm, base_value, name); interpreter.set(dst(), TRY(private_reference.get_value(vm))); return {}; } ThrowCompletionOr<void> HasPrivateId::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto base = interpreter.get(m_base); if (!base.is_object()) return vm.throw_completion<TypeError>(ErrorType::InOperatorWithObject); auto private_environment = interpreter.running_execution_context().private_environment; VERIFY(private_environment); auto private_name = private_environment->resolve_private_identifier(interpreter.current_executable().get_identifier(m_property)); interpreter.set(dst(), Value(base.as_object().private_element_find(private_name) != nullptr)); return {}; } ThrowCompletionOr<void> PutBySpread::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); auto base = interpreter.get(m_base); // a. Let baseObj be ? ToObject(V.[[Base]]). auto object = TRY(base.to_object(vm)); TRY(object->copy_data_properties(vm, value, {})); return {}; } ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); auto base = interpreter.get(m_base); auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier); PropertyKey name = interpreter.current_executable().get_identifier(m_property); auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index]; TRY(put_by_property_key(vm, base, base, value, base_identifier, name, m_kind, &cache)); return {}; } ThrowCompletionOr<void> PutByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); auto base = interpreter.get(m_base); PropertyKey name = interpreter.current_executable().get_identifier(m_property); auto& cache = interpreter.current_executable().property_lookup_caches[m_cache_index]; TRY(put_by_property_key(vm, base, interpreter.get(m_this_value), value, {}, name, m_kind, &cache)); return {}; } ThrowCompletionOr<void> PutPrivateById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); auto object = TRY(interpreter.get(m_base).to_object(vm)); auto name = interpreter.current_executable().get_identifier(m_property); auto private_reference = make_private_reference(vm, object, name); TRY(private_reference.put_value(vm, value)); return {}; } ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.get(m_base); interpreter.set(dst(), TRY(Bytecode::delete_by_id(interpreter, base_value, m_property))); return {}; } ThrowCompletionOr<void> DeleteByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto base_value = interpreter.get(m_base); auto const& identifier = interpreter.current_executable().get_identifier(m_property); bool strict = vm.in_strict_mode(); auto reference = Reference { base_value, identifier, interpreter.get(m_this_value), strict }; interpreter.set(dst(), Value(TRY(reference.delete_(vm)))); return {}; } ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const { auto& cached_this_value = interpreter.reg(Register::this_value()); if (!cached_this_value.is_empty()) return {}; // OPTIMIZATION: Because the value of 'this' cannot be reassigned during a function execution, it's // resolved once and then saved for subsequent use. auto& running_execution_context = interpreter.running_execution_context(); if (auto function = running_execution_context.function; function && is<ECMAScriptFunctionObject>(*function) && !static_cast<ECMAScriptFunctionObject&>(*function).allocates_function_environment()) { cached_this_value = running_execution_context.this_value; } else { auto& vm = interpreter.vm(); cached_this_value = TRY(vm.resolve_this_binding()); } return {}; } // https://tc39.es/ecma262/#sec-makesuperpropertyreference ThrowCompletionOr<void> ResolveSuperBase::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // 1. Let env be GetThisEnvironment(). auto& env = verify_cast<FunctionEnvironment>(*get_this_environment(vm)); // 2. Assert: env.HasSuperBinding() is true. VERIFY(env.has_super_binding()); // 3. Let baseValue be ? env.GetSuperBase(). interpreter.set(dst(), TRY(env.get_super_base())); return {}; } void GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), interpreter.vm().get_new_target()); } void GetImportMeta::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), interpreter.vm().get_import_meta()); } static ThrowCompletionOr<Value> dispatch_builtin_call(Bytecode::Interpreter& interpreter, Bytecode::Builtin builtin, ReadonlySpan<Operand> arguments) { switch (builtin) { case Builtin::MathAbs: return TRY(MathObject::abs_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Builtin::MathLog: return TRY(MathObject::log_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Builtin::MathPow: return TRY(MathObject::pow_impl(interpreter.vm(), interpreter.get(arguments[0]), interpreter.get(arguments[1]))); case Builtin::MathExp: return TRY(MathObject::exp_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Builtin::MathCeil: return TRY(MathObject::ceil_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Builtin::MathFloor: return TRY(MathObject::floor_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Builtin::MathRound: return TRY(MathObject::round_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Builtin::MathSqrt: return TRY(MathObject::sqrt_impl(interpreter.vm(), interpreter.get(arguments[0]))); case Bytecode::Builtin::__Count: VERIFY_NOT_REACHED(); } VERIFY_NOT_REACHED(); } ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee = interpreter.get(m_callee); TRY(throw_if_needed_for_call(interpreter, callee, CallType::Call, expression_string())); auto argument_values = interpreter.allocate_argument_values(m_argument_count); for (size_t i = 0; i < m_argument_count; ++i) argument_values[i] = interpreter.get(m_arguments[i]); interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), CallType::Call, callee, argument_values))); return {}; } ThrowCompletionOr<void> CallConstruct::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee = interpreter.get(m_callee); TRY(throw_if_needed_for_call(interpreter, callee, CallType::Construct, expression_string())); auto argument_values = interpreter.allocate_argument_values(m_argument_count); for (size_t i = 0; i < m_argument_count; ++i) argument_values[i] = interpreter.get(m_arguments[i]); interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), CallType::Construct, callee, argument_values))); return {}; } ThrowCompletionOr<void> CallDirectEval::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee = interpreter.get(m_callee); TRY(throw_if_needed_for_call(interpreter, callee, CallType::DirectEval, expression_string())); auto argument_values = interpreter.allocate_argument_values(m_argument_count); for (size_t i = 0; i < m_argument_count; ++i) argument_values[i] = interpreter.get(m_arguments[i]); interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), CallType::DirectEval, callee, argument_values))); return {}; } ThrowCompletionOr<void> CallBuiltin::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee = interpreter.get(m_callee); TRY(throw_if_needed_for_call(interpreter, callee, CallType::Call, expression_string())); if (m_argument_count == Bytecode::builtin_argument_count(m_builtin) && callee.is_object() && interpreter.realm().get_builtin_value(m_builtin) == &callee.as_object()) { interpreter.set(dst(), TRY(dispatch_builtin_call(interpreter, m_builtin, { m_arguments, m_argument_count }))); return {}; } auto argument_values = interpreter.allocate_argument_values(m_argument_count); for (size_t i = 0; i < m_argument_count; ++i) argument_values[i] = interpreter.get(m_arguments[i]); interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), CallType::Call, callee, argument_values))); return {}; } ThrowCompletionOr<void> CallWithArgumentArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee = interpreter.get(m_callee); TRY(throw_if_needed_for_call(interpreter, callee, call_type(), expression_string())); auto argument_values = argument_list_evaluation(interpreter.vm(), interpreter.get(arguments())); interpreter.set(dst(), TRY(perform_call(interpreter, interpreter.get(m_this_value), call_type(), callee, move(argument_values)))); return {}; } // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation ThrowCompletionOr<void> SuperCallWithArgumentArray::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), TRY(super_call_with_argument_array(interpreter.vm(), interpreter.get(arguments()), m_is_synthetic))); return {}; } void NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.set(dst(), new_function(vm, m_function_node, m_lhs_name, m_home_object)); } void Return::execute_impl(Bytecode::Interpreter& interpreter) const { if (m_value.has_value()) interpreter.do_return(interpreter.get(*m_value)); else interpreter.do_return(js_undefined()); } ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = interpreter.get(dst()); // OPTIMIZATION: Fast path for Int32 values. if (old_value.is_int32()) { auto integer_value = old_value.as_i32(); if (integer_value != NumericLimits<i32>::max()) [[likely]] { interpreter.set(dst(), Value { integer_value + 1 }); return {}; } } old_value = TRY(old_value.to_numeric(vm)); if (old_value.is_number()) interpreter.set(dst(), Value(old_value.as_double() + 1)); else interpreter.set(dst(), BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }))); return {}; } ThrowCompletionOr<void> PostfixIncrement::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = interpreter.get(m_src); // OPTIMIZATION: Fast path for Int32 values. if (old_value.is_int32()) { auto integer_value = old_value.as_i32(); if (integer_value != NumericLimits<i32>::max()) [[likely]] { interpreter.set(m_dst, old_value); interpreter.set(m_src, Value { integer_value + 1 }); return {}; } } old_value = TRY(old_value.to_numeric(vm)); interpreter.set(m_dst, old_value); if (old_value.is_number()) interpreter.set(m_src, Value(old_value.as_double() + 1)); else interpreter.set(m_src, BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }))); return {}; } ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = interpreter.get(dst()); old_value = TRY(old_value.to_numeric(vm)); if (old_value.is_number()) interpreter.set(dst(), Value(old_value.as_double() - 1)); else interpreter.set(dst(), BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }))); return {}; } ThrowCompletionOr<void> PostfixDecrement::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = interpreter.get(m_src); old_value = TRY(old_value.to_numeric(vm)); interpreter.set(m_dst, old_value); if (old_value.is_number()) interpreter.set(m_src, Value(old_value.as_double() - 1)); else interpreter.set(m_src, BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }))); return {}; } ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const { return throw_completion(interpreter.get(src())); } ThrowCompletionOr<void> ThrowIfNotObject::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto src = interpreter.get(m_src); if (!src.is_object()) return vm.throw_completion<TypeError>(ErrorType::NotAnObject, src.to_string_without_side_effects()); return {}; } ThrowCompletionOr<void> ThrowIfNullish::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); if (value.is_nullish()) return vm.throw_completion<TypeError>(ErrorType::NotObjectCoercible, value.to_string_without_side_effects()); return {}; } ThrowCompletionOr<void> ThrowIfTDZ::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); if (value.is_empty()) return vm.throw_completion<ReferenceError>(ErrorType::BindingNotInitialized, value.to_string_without_side_effects()); return {}; } void LeaveLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& running_execution_context = interpreter.running_execution_context(); running_execution_context.lexical_environment = running_execution_context.saved_lexical_environments.take_last(); } void LeavePrivateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& running_execution_context = interpreter.vm().running_execution_context(); running_execution_context.private_environment = running_execution_context.private_environment->outer_environment(); } void LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.leave_unwind_context(); } void Yield::execute_impl(Bytecode::Interpreter& interpreter) const { auto yielded_value = interpreter.get(m_value).value_or(js_undefined()); interpreter.do_return( interpreter.do_yield(yielded_value, m_continuation_label)); } void PrepareYield::execute_impl(Bytecode::Interpreter& interpreter) const { auto value = interpreter.get(m_value).value_or(js_undefined()); interpreter.set(m_dest, interpreter.do_yield(value, {})); } void Await::execute_impl(Bytecode::Interpreter& interpreter) const { auto yielded_value = interpreter.get(m_argument).value_or(js_undefined()); auto object = Object::create(interpreter.realm(), nullptr); object->define_direct_property("result", yielded_value, JS::default_attributes); // FIXME: If we get a pointer, which is not accurately representable as a double // will cause this to explode object->define_direct_property("continuation", Value(m_continuation_label.address()), JS::default_attributes); object->define_direct_property("isAwait", Value(true), JS::default_attributes); interpreter.do_return(object); } ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), TRY(get_by_value(interpreter.vm(), m_base_identifier, interpreter.get(m_base), interpreter.get(m_property), interpreter.current_executable()))); return {}; } ThrowCompletionOr<void> GetByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto property_key_value = interpreter.get(m_property); auto object = TRY(interpreter.get(m_base).to_object(vm)); auto property_key = TRY(property_key_value.to_property_key(vm)); interpreter.set(dst(), TRY(object->internal_get(property_key, interpreter.get(m_this_value)))); return {}; } ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); auto base_identifier = interpreter.current_executable().get_identifier(m_base_identifier); TRY(put_by_value(vm, interpreter.get(m_base), base_identifier, interpreter.get(m_property), value, m_kind)); return {}; } ThrowCompletionOr<void> PutByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.get(m_src); auto base = interpreter.get(m_base); auto property_key = TRY(interpreter.get(m_property).to_property_key(vm)); TRY(put_by_property_key(vm, base, interpreter.get(m_this_value), value, {}, property_key, m_kind)); return {}; } ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.get(m_base); auto property_key_value = interpreter.get(m_property); interpreter.set(dst(), TRY(delete_by_value(interpreter, base_value, property_key_value))); return {}; } ThrowCompletionOr<void> DeleteByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto property_key_value = interpreter.get(m_property); auto base_value = interpreter.get(m_base); auto this_value = interpreter.get(m_this_value); interpreter.set(dst(), TRY(delete_by_value_with_this(interpreter, base_value, property_key_value, this_value))); return {}; } ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.set(dst(), TRY(get_iterator(vm, interpreter.get(iterable()), m_hint))); return {}; } ThrowCompletionOr<void> GetObjectFromIteratorRecord::execute_impl(Bytecode::Interpreter& interpreter) const { auto& iterator_record = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object()); interpreter.set(m_object, iterator_record.iterator); return {}; } ThrowCompletionOr<void> GetNextMethodFromIteratorRecord::execute_impl(Bytecode::Interpreter& interpreter) const { auto& iterator_record = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object()); interpreter.set(m_next_method, iterator_record.next_method); return {}; } ThrowCompletionOr<void> GetMethod::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto identifier = interpreter.current_executable().get_identifier(m_property); auto method = TRY(interpreter.get(m_object).get_method(vm, identifier)); interpreter.set(dst(), method ?: js_undefined()); return {}; } ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.set(dst(), TRY(get_object_property_iterator(interpreter.vm(), interpreter.get(object())))); return {}; } ThrowCompletionOr<void> IteratorClose::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& iterator = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object()); // FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!) TRY(iterator_close(vm, iterator, Completion { m_completion_type, m_completion_value })); return {}; } ThrowCompletionOr<void> AsyncIteratorClose::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& iterator = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object()); // FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!) TRY(async_iterator_close(vm, iterator, Completion { m_completion_type, m_completion_value })); return {}; } ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& iterator_record = verify_cast<IteratorRecord>(interpreter.get(m_iterator_record).as_object()); interpreter.set(dst(), TRY(iterator_next(vm, iterator_record))); return {}; } ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const { Value super_class; if (m_super_class.has_value()) super_class = interpreter.get(m_super_class.value()); Vector<Value> element_keys; for (size_t i = 0; i < m_element_keys_count; ++i) { Value element_key; if (m_element_keys[i].has_value()) element_key = interpreter.get(m_element_keys[i].value()); element_keys.append(element_key); } interpreter.set(dst(), TRY(new_class(interpreter.vm(), super_class, m_class_expression, m_lhs_name, element_keys))); return {}; } // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation ThrowCompletionOr<void> TypeofBinding::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); if (m_cache.is_valid()) { auto const* environment = interpreter.running_execution_context().lexical_environment.ptr(); for (size_t i = 0; i < m_cache.hops; ++i) environment = environment->outer_environment(); if (!environment->is_permanently_screwed_by_eval()) { auto value = TRY(static_cast<DeclarativeEnvironment const&>(*environment).get_binding_value_direct(vm, m_cache.index)); interpreter.set(dst(), value.typeof_(vm)); return {}; } m_cache = {}; } // 1. Let val be the result of evaluating UnaryExpression. auto reference = TRY(vm.resolve_binding(interpreter.current_executable().get_identifier(m_identifier))); // 2. If val is a Reference Record, then // a. If IsUnresolvableReference(val) is true, return "undefined". if (reference.is_unresolvable()) { interpreter.set(dst(), PrimitiveString::create(vm, "undefined"_string)); return {}; } // 3. Set val to ? GetValue(val). auto value = TRY(reference.get_value(vm)); if (reference.environment_coordinate().has_value()) m_cache = reference.environment_coordinate().value(); // 4. NOTE: This step is replaced in section B.3.6.3. // 5. Return a String according to Table 41. interpreter.set(dst(), value.typeof_(vm)); return {}; } void BlockDeclarationInstantiation::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_environment = interpreter.running_execution_context().lexical_environment; auto& running_execution_context = interpreter.running_execution_context(); running_execution_context.saved_lexical_environments.append(old_environment); running_execution_context.lexical_environment = new_declarative_environment(*old_environment); m_scope_node.block_declaration_instantiation(vm, running_execution_context.lexical_environment); } ByteString Mov::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Mov {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("src"sv, m_src, executable)); } ByteString NewArray::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("NewArray {}", format_operand("dst"sv, dst(), executable)); if (m_element_count != 0) { builder.appendff(", {}", format_operand_list("args"sv, { m_elements, m_element_count }, executable)); } return builder.to_byte_string(); } ByteString NewPrimitiveArray::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("NewPrimitiveArray {}, {}"sv, format_operand("dst"sv, dst(), executable), format_value_list("elements"sv, elements())); } ByteString AddPrivateName::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("AddPrivateName {}"sv, executable.identifier_table->get(m_name)); } ByteString ArrayAppend::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Append {}, {}{}", format_operand("dst"sv, dst(), executable), format_operand("src"sv, src(), executable), m_is_spread ? " **"sv : ""sv); } ByteString IteratorToArray::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("IteratorToArray {}, {}", format_operand("dst"sv, dst(), executable), format_operand("iterator"sv, iterator(), executable)); } ByteString NewObject::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("NewObject {}", format_operand("dst"sv, dst(), executable)); } ByteString NewRegExp::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("NewRegExp {}, source:{} (\"{}\") flags:{} (\"{}\")", format_operand("dst"sv, dst(), executable), m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index)); } ByteString CopyObjectExcludingProperties::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("CopyObjectExcludingProperties {}, {}", format_operand("dst"sv, dst(), executable), format_operand("from"sv, m_from_object, executable)); if (m_excluded_names_count != 0) { builder.append(" excluding:["sv); for (size_t i = 0; i < m_excluded_names_count; ++i) { if (i != 0) builder.append(", "sv); builder.append(format_operand("#"sv, m_excluded_names[i], executable)); } builder.append(']'); } return builder.to_byte_string(); } ByteString ConcatString::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("ConcatString {}, {}", format_operand("dst"sv, dst(), executable), format_operand("src"sv, src(), executable)); } ByteString GetCalleeAndThisFromEnvironment::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetCalleeAndThisFromEnvironment {}, {} <- {}", format_operand("callee"sv, m_callee, executable), format_operand("this"sv, m_this_value, executable), executable.identifier_table->get(m_identifier)); } ByteString GetBinding::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetBinding {}, {}", format_operand("dst"sv, dst(), executable), executable.identifier_table->get(m_identifier)); } ByteString GetGlobal::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetGlobal {}, {}", format_operand("dst"sv, dst(), executable), executable.identifier_table->get(m_identifier)); } ByteString DeleteVariable::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("DeleteVariable {}", executable.identifier_table->get(m_identifier)); } ByteString CreateLexicalEnvironment::to_byte_string_impl(Bytecode::Executable const&) const { return "CreateLexicalEnvironment"sv; } ByteString CreatePrivateEnvironment::to_byte_string_impl(Bytecode::Executable const&) const { return "CreatePrivateEnvironment"sv; } ByteString CreateVariableEnvironment::to_byte_string_impl(Bytecode::Executable const&) const { return "CreateVariableEnvironment"sv; } ByteString CreateVariable::to_byte_string_impl(Bytecode::Executable const& executable) const { auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return ByteString::formatted("CreateVariable env:{} immutable:{} global:{} {}", mode_string, m_is_immutable, m_is_global, executable.identifier_table->get(m_identifier)); } ByteString CreateRestParams::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("CreateRestParams {}, rest_index:{}", format_operand("dst"sv, m_dst, executable), m_rest_index); } ByteString CreateArguments::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("CreateArguments"); if (m_dst.has_value()) builder.appendff(" {}", format_operand("dst"sv, *m_dst, executable)); builder.appendff(" {} immutable:{}", m_kind == Kind::Mapped ? "mapped"sv : "unmapped"sv, m_is_immutable); return builder.to_byte_string(); } ByteString EnterObjectEnvironment::to_byte_string_impl(Executable const& executable) const { return ByteString::formatted("EnterObjectEnvironment {}", format_operand("object"sv, m_object, executable)); } ByteString InitializeLexicalBinding::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("InitializeLexicalBinding {}, {}", executable.identifier_table->get(m_identifier), format_operand("src"sv, src(), executable)); } ByteString InitializeVariableBinding::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("InitializeVariableBinding {}, {}", executable.identifier_table->get(m_identifier), format_operand("src"sv, src(), executable)); } ByteString SetLexicalBinding::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("SetLexicalBinding {}, {}", executable.identifier_table->get(m_identifier), format_operand("src"sv, src(), executable)); } ByteString SetVariableBinding::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("SetVariableBinding {}, {}", executable.identifier_table->get(m_identifier), format_operand("src"sv, src(), executable)); } ByteString GetArgument::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetArgument {}, {}", index(), format_operand("dst"sv, dst(), executable)); } ByteString SetArgument::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("SetArgument {}, {}", index(), format_operand("src"sv, src(), executable)); } static StringView property_kind_to_string(PropertyKind kind) { switch (kind) { case PropertyKind::Getter: return "getter"sv; case PropertyKind::Setter: return "setter"sv; case PropertyKind::KeyValue: return "key-value"sv; case PropertyKind::DirectKeyValue: return "direct-key-value"sv; case PropertyKind::ProtoSetter: return "proto-setter"sv; } VERIFY_NOT_REACHED(); } ByteString PutBySpread::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("PutBySpread {}, {}", format_operand("base"sv, m_base, executable), format_operand("src"sv, m_src, executable)); } ByteString PutById::to_byte_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return ByteString::formatted("PutById {}, {}, {}, kind:{}", format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property), format_operand("src"sv, m_src, executable), kind); } ByteString PutByIdWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return ByteString::formatted("PutByIdWithThis {}, {}, {}, {}, kind:{}", format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property), format_operand("src"sv, m_src, executable), format_operand("this"sv, m_this_value, executable), kind); } ByteString PutPrivateById::to_byte_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return ByteString::formatted( "PutPrivateById {}, {}, {}, kind:{} ", format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property), format_operand("src"sv, m_src, executable), kind); } ByteString GetById::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetById {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property)); } ByteString GetByIdWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetByIdWithThis {}, {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property), format_operand("this"sv, m_this_value, executable)); } ByteString GetLength::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetLength {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable)); } ByteString GetLengthWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetLengthWithThis {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), format_operand("this"sv, m_this_value, executable)); } ByteString GetPrivateById::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetPrivateById {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property)); } ByteString HasPrivateId::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("HasPrivateId {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property)); } ByteString DeleteById::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("DeleteById {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property)); } ByteString DeleteByIdWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("DeleteByIdWithThis {}, {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), executable.identifier_table->get(m_property), format_operand("this"sv, m_this_value, executable)); } ByteString Jump::to_byte_string_impl(Bytecode::Executable const&) const { return ByteString::formatted("Jump {}", m_target); } ByteString JumpIf::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("JumpIf {}, \033[32mtrue\033[0m:{} \033[32mfalse\033[0m:{}", format_operand("condition"sv, m_condition, executable), m_true_target, m_false_target); } ByteString JumpTrue::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("JumpTrue {}, {}", format_operand("condition"sv, m_condition, executable), m_target); } ByteString JumpFalse::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("JumpFalse {}, {}", format_operand("condition"sv, m_condition, executable), m_target); } ByteString JumpNullish::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("JumpNullish {}, null:{} nonnull:{}", format_operand("condition"sv, m_condition, executable), m_true_target, m_false_target); } #define HANDLE_COMPARISON_OP(op_TitleCase, op_snake_case, numeric_operator) \ ByteString Jump##op_TitleCase::to_byte_string_impl(Bytecode::Executable const& executable) const \ { \ return ByteString::formatted("Jump" #op_TitleCase " {}, {}, true:{}, false:{}", \ format_operand("lhs"sv, m_lhs, executable), \ format_operand("rhs"sv, m_rhs, executable), \ m_true_target, \ m_false_target); \ } JS_ENUMERATE_COMPARISON_OPS(HANDLE_COMPARISON_OP) ByteString JumpUndefined::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("JumpUndefined {}, undefined:{} defined:{}", format_operand("condition"sv, m_condition, executable), m_true_target, m_false_target); } static StringView call_type_to_string(CallType type) { switch (type) { case CallType::Call: return ""sv; case CallType::Construct: return " (Construct)"sv; case CallType::DirectEval: return " (DirectEval)"sv; } VERIFY_NOT_REACHED(); } ByteString Call::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("Call {}, {}, {}, "sv, format_operand("dst"sv, m_dst, executable), format_operand("callee"sv, m_callee, executable), format_operand("this"sv, m_this_value, executable)); builder.append(format_operand_list("args"sv, { m_arguments, m_argument_count }, executable)); if (m_expression_string.has_value()) { builder.appendff(", `{}`", executable.get_string(m_expression_string.value())); } return builder.to_byte_string(); } ByteString CallConstruct::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("CallConstruct {}, {}, {}, "sv, format_operand("dst"sv, m_dst, executable), format_operand("callee"sv, m_callee, executable), format_operand("this"sv, m_this_value, executable)); builder.append(format_operand_list("args"sv, { m_arguments, m_argument_count }, executable)); if (m_expression_string.has_value()) { builder.appendff(", `{}`", executable.get_string(m_expression_string.value())); } return builder.to_byte_string(); } ByteString CallDirectEval::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("CallDirectEval {}, {}, {}, "sv, format_operand("dst"sv, m_dst, executable), format_operand("callee"sv, m_callee, executable), format_operand("this"sv, m_this_value, executable)); builder.append(format_operand_list("args"sv, { m_arguments, m_argument_count }, executable)); if (m_expression_string.has_value()) { builder.appendff(", `{}`", executable.get_string(m_expression_string.value())); } return builder.to_byte_string(); } ByteString CallBuiltin::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("CallBuiltin {}, {}, {}, "sv, format_operand("dst"sv, m_dst, executable), format_operand("callee"sv, m_callee, executable), format_operand("this"sv, m_this_value, executable)); builder.append(format_operand_list("args"sv, { m_arguments, m_argument_count }, executable)); builder.appendff(", (builtin:{})", m_builtin); if (m_expression_string.has_value()) { builder.appendff(", `{}`", executable.get_string(m_expression_string.value())); } return builder.to_byte_string(); } ByteString CallWithArgumentArray::to_byte_string_impl(Bytecode::Executable const& executable) const { auto type = call_type_to_string(m_type); StringBuilder builder; builder.appendff("CallWithArgumentArray{} {}, {}, {}, {}", type, format_operand("dst"sv, m_dst, executable), format_operand("callee"sv, m_callee, executable), format_operand("this"sv, m_this_value, executable), format_operand("arguments"sv, m_arguments, executable)); if (m_expression_string.has_value()) builder.appendff(" ({})", executable.get_string(m_expression_string.value())); return builder.to_byte_string(); } ByteString SuperCallWithArgumentArray::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("SuperCallWithArgumentArray {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("arguments"sv, m_arguments, executable)); } ByteString NewFunction::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.appendff("NewFunction {}", format_operand("dst"sv, m_dst, executable)); if (m_function_node.has_name()) builder.appendff(" name:{}"sv, m_function_node.name()); if (m_lhs_name.has_value()) builder.appendff(" lhs_name:{}"sv, executable.get_identifier(m_lhs_name.value())); if (m_home_object.has_value()) builder.appendff(", {}"sv, format_operand("home_object"sv, m_home_object.value(), executable)); return builder.to_byte_string(); } ByteString NewClass::to_byte_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; auto name = m_class_expression.name(); builder.appendff("NewClass {}", format_operand("dst"sv, m_dst, executable)); if (m_super_class.has_value()) builder.appendff(", {}", format_operand("super_class"sv, *m_super_class, executable)); if (!name.is_empty()) builder.appendff(", {}", name); if (m_lhs_name.has_value()) builder.appendff(", lhs_name:{}"sv, executable.get_identifier(m_lhs_name.value())); return builder.to_byte_string(); } ByteString Return::to_byte_string_impl(Bytecode::Executable const& executable) const { if (m_value.has_value()) return ByteString::formatted("Return {}", format_operand("value"sv, m_value.value(), executable)); return "Return"; } ByteString Increment::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Increment {}", format_operand("dst"sv, m_dst, executable)); } ByteString PostfixIncrement::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("PostfixIncrement {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("src"sv, m_src, executable)); } ByteString Decrement::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Decrement {}", format_operand("dst"sv, m_dst, executable)); } ByteString PostfixDecrement::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("PostfixDecrement {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("src"sv, m_src, executable)); } ByteString Throw::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Throw {}", format_operand("src"sv, m_src, executable)); } ByteString ThrowIfNotObject::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("ThrowIfNotObject {}", format_operand("src"sv, m_src, executable)); } ByteString ThrowIfNullish::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("ThrowIfNullish {}", format_operand("src"sv, m_src, executable)); } ByteString ThrowIfTDZ::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("ThrowIfTDZ {}", format_operand("src"sv, m_src, executable)); } ByteString EnterUnwindContext::to_byte_string_impl(Bytecode::Executable const&) const { return ByteString::formatted("EnterUnwindContext entry:{}", m_entry_point); } ByteString ScheduleJump::to_byte_string_impl(Bytecode::Executable const&) const { return ByteString::formatted("ScheduleJump {}", m_target); } ByteString LeaveLexicalEnvironment::to_byte_string_impl(Bytecode::Executable const&) const { return "LeaveLexicalEnvironment"sv; } ByteString LeavePrivateEnvironment::to_byte_string_impl(Bytecode::Executable const&) const { return "LeavePrivateEnvironment"sv; } ByteString LeaveUnwindContext::to_byte_string_impl(Bytecode::Executable const&) const { return "LeaveUnwindContext"; } ByteString ContinuePendingUnwind::to_byte_string_impl(Bytecode::Executable const&) const { return ByteString::formatted("ContinuePendingUnwind resume:{}", m_resume_target); } ByteString Yield::to_byte_string_impl(Bytecode::Executable const& executable) const { if (m_continuation_label.has_value()) { return ByteString::formatted("Yield continuation:{}, {}", m_continuation_label.value(), format_operand("value"sv, m_value, executable)); } return ByteString::formatted("Yield return {}", format_operand("value"sv, m_value, executable)); } ByteString PrepareYield::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("PrepareYield {}, {}", format_operand("dst"sv, m_dest, executable), format_operand("value"sv, m_value, executable)); } ByteString Await::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Await {}, continuation:{}", format_operand("argument"sv, m_argument, executable), m_continuation_label); } ByteString GetByValue::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetByValue {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), format_operand("property"sv, m_property, executable)); } ByteString GetByValueWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetByValueWithThis {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("base"sv, m_base, executable), format_operand("property"sv, m_property, executable)); } ByteString PutByValue::to_byte_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return ByteString::formatted("PutByValue {}, {}, {}, kind:{}", format_operand("base"sv, m_base, executable), format_operand("property"sv, m_property, executable), format_operand("src"sv, m_src, executable), kind); } ByteString PutByValueWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return ByteString::formatted("PutByValueWithThis {}, {}, {}, {}, kind:{}", format_operand("base"sv, m_base, executable), format_operand("property"sv, m_property, executable), format_operand("src"sv, m_src, executable), format_operand("this"sv, m_this_value, executable), kind); } ByteString DeleteByValue::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("DeleteByValue {}, {}, {}", format_operand("dst"sv, dst(), executable), format_operand("base"sv, m_base, executable), format_operand("property"sv, m_property, executable)); } ByteString DeleteByValueWithThis::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("DeleteByValueWithThis {}, {}, {}, {}", format_operand("dst"sv, dst(), executable), format_operand("base"sv, m_base, executable), format_operand("property"sv, m_property, executable), format_operand("this"sv, m_this_value, executable)); } ByteString GetIterator::to_byte_string_impl(Executable const& executable) const { auto hint = m_hint == IteratorHint::Sync ? "sync" : "async"; return ByteString::formatted("GetIterator {}, {}, hint:{}", format_operand("dst"sv, m_dst, executable), format_operand("iterable"sv, m_iterable, executable), hint); } ByteString GetMethod::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetMethod {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("object"sv, m_object, executable), executable.identifier_table->get(m_property)); } ByteString GetObjectPropertyIterator::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetObjectPropertyIterator {}, {}", format_operand("dst"sv, dst(), executable), format_operand("object"sv, object(), executable)); } ByteString IteratorClose::to_byte_string_impl(Bytecode::Executable const& executable) const { if (!m_completion_value.has_value()) return ByteString::formatted("IteratorClose {}, completion_type={} completion_value=<empty>", format_operand("iterator_record"sv, m_iterator_record, executable), to_underlying(m_completion_type)); auto completion_value_string = m_completion_value->to_string_without_side_effects(); return ByteString::formatted("IteratorClose {}, completion_type={} completion_value={}", format_operand("iterator_record"sv, m_iterator_record, executable), to_underlying(m_completion_type), completion_value_string); } ByteString AsyncIteratorClose::to_byte_string_impl(Bytecode::Executable const& executable) const { if (!m_completion_value.has_value()) { return ByteString::formatted("AsyncIteratorClose {}, completion_type:{} completion_value:<empty>", format_operand("iterator_record"sv, m_iterator_record, executable), to_underlying(m_completion_type)); } return ByteString::formatted("AsyncIteratorClose {}, completion_type:{}, completion_value:{}", format_operand("iterator_record"sv, m_iterator_record, executable), to_underlying(m_completion_type), m_completion_value); } ByteString IteratorNext::to_byte_string_impl(Executable const& executable) const { return ByteString::formatted("IteratorNext {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("iterator_record"sv, m_iterator_record, executable)); } ByteString ResolveThisBinding::to_byte_string_impl(Bytecode::Executable const&) const { return "ResolveThisBinding"sv; } ByteString ResolveSuperBase::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("ResolveSuperBase {}", format_operand("dst"sv, m_dst, executable)); } ByteString GetNewTarget::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetNewTarget {}", format_operand("dst"sv, m_dst, executable)); } ByteString GetImportMeta::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetImportMeta {}", format_operand("dst"sv, m_dst, executable)); } ByteString TypeofBinding::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("TypeofBinding {}, {}", format_operand("dst"sv, m_dst, executable), executable.identifier_table->get(m_identifier)); } ByteString BlockDeclarationInstantiation::to_byte_string_impl(Bytecode::Executable const&) const { return "BlockDeclarationInstantiation"sv; } ByteString ImportCall::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("ImportCall {}, {}, {}", format_operand("dst"sv, m_dst, executable), format_operand("specifier"sv, m_specifier, executable), format_operand("options"sv, m_options, executable)); } ByteString Catch::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Catch {}", format_operand("dst"sv, m_dst, executable)); } ByteString LeaveFinally::to_byte_string_impl(Bytecode::Executable const&) const { return ByteString::formatted("LeaveFinally"); } ByteString RestoreScheduledJump::to_byte_string_impl(Bytecode::Executable const&) const { return ByteString::formatted("RestoreScheduledJump"); } ByteString GetObjectFromIteratorRecord::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetObjectFromIteratorRecord {}, {}", format_operand("object"sv, m_object, executable), format_operand("iterator_record"sv, m_iterator_record, executable)); } ByteString GetNextMethodFromIteratorRecord::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("GetNextMethodFromIteratorRecord {}, {}", format_operand("next_method"sv, m_next_method, executable), format_operand("iterator_record"sv, m_iterator_record, executable)); } ByteString End::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("End {}", format_operand("value"sv, m_value, executable)); } ByteString Dump::to_byte_string_impl(Bytecode::Executable const& executable) const { return ByteString::formatted("Dump '{}', {}", m_text, format_operand("value"sv, m_value, executable)); } }