/* * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org> * Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org> * Copyright (c) 2021-2023, Sam Atkins <atkinssj@serenityos.org> * Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech> * * SPDX-License-Identifier: BSD-2-Clause */ #include "CalculatedStyleValue.h" #include <LibWeb/CSS/Percentage.h> #include <LibWeb/CSS/PropertyID.h> namespace Web::CSS { static bool is_number(CalculatedStyleValue::ResolvedType type) { return type == CalculatedStyleValue::ResolvedType::Number || type == CalculatedStyleValue::ResolvedType::Integer; } static bool is_dimension(CalculatedStyleValue::ResolvedType type) { return type != CalculatedStyleValue::ResolvedType::Number && type != CalculatedStyleValue::ResolvedType::Integer && type != CalculatedStyleValue::ResolvedType::Percentage; } static double resolve_value_radians(CalculatedStyleValue::CalculationResult::Value value) { return value.visit( [](Number const& number) { return number.value(); }, [](Angle const& angle) { return angle.to_radians(); }, [](auto const&) { VERIFY_NOT_REACHED(); return 0.0; }); } static double resolve_value(CalculatedStyleValue::CalculationResult::Value value, Optional<Length::ResolutionContext const&> context) { return value.visit( [](Number const& number) { return number.value(); }, [](Angle const& angle) { return angle.to_degrees(); }, [](Flex const& flex) { return flex.to_fr(); }, [](Frequency const& frequency) { return frequency.to_hertz(); }, [&context](Length const& length) { return length.to_px(*context).to_double(); }, [](Percentage const& percentage) { return percentage.value(); }, [](Resolution const& resolution) { return resolution.to_dots_per_pixel(); }, [](Time const& time) { return time.to_seconds(); }); } static Optional<CSSNumericType> add_the_types(Vector<NonnullOwnPtr<CalculationNode>> const& nodes, PropertyID property_id) { Optional<CSSNumericType> left_type; for (auto const& value : nodes) { auto right_type = value->determine_type(property_id); if (!right_type.has_value()) return {}; if (left_type.has_value()) { left_type = left_type->added_to(right_type.value()); } else { left_type = right_type; } if (!left_type.has_value()) return {}; } return left_type; } static CalculatedStyleValue::CalculationResult to_resolved_type(CalculatedStyleValue::ResolvedType type, double value) { switch (type) { case CalculatedStyleValue::ResolvedType::Integer: return { Number(Number::Type::Integer, value) }; case CalculatedStyleValue::ResolvedType::Number: return { Number(Number::Type::Number, value) }; case CalculatedStyleValue::ResolvedType::Angle: return { Angle::make_degrees(value) }; case CalculatedStyleValue::ResolvedType::Flex: return { Flex::make_fr(value) }; case CalculatedStyleValue::ResolvedType::Frequency: return { Frequency::make_hertz(value) }; case CalculatedStyleValue::ResolvedType::Length: return { Length::make_px(CSSPixels::nearest_value_for(value)) }; case CalculatedStyleValue::ResolvedType::Percentage: return { Percentage(value) }; case CalculatedStyleValue::ResolvedType::Resolution: return { Resolution::make_dots_per_pixel(value) }; case CalculatedStyleValue::ResolvedType::Time: return { Time::make_seconds(value) }; } VERIFY_NOT_REACHED(); } Optional<CalculationNode::ConstantType> CalculationNode::constant_type_from_string(StringView string) { if (string.equals_ignoring_ascii_case("e"sv)) return CalculationNode::ConstantType::E; if (string.equals_ignoring_ascii_case("pi"sv)) return CalculationNode::ConstantType::Pi; if (string.equals_ignoring_ascii_case("infinity"sv)) return CalculationNode::ConstantType::Infinity; if (string.equals_ignoring_ascii_case("-infinity"sv)) return CalculationNode::ConstantType::MinusInfinity; if (string.equals_ignoring_ascii_case("NaN"sv)) return CalculationNode::ConstantType::NaN; return {}; } CalculationNode::CalculationNode(Type type) : m_type(type) { } CalculationNode::~CalculationNode() = default; NonnullOwnPtr<NumericCalculationNode> NumericCalculationNode::create(NumericValue value) { return adopt_own(*new (nothrow) NumericCalculationNode(move(value))); } NumericCalculationNode::NumericCalculationNode(NumericValue value) : CalculationNode(Type::Numeric) , m_value(move(value)) { } NumericCalculationNode::~NumericCalculationNode() = default; String NumericCalculationNode::to_string() const { return m_value.visit([](auto& value) { return value.to_string(); }); } Optional<CalculatedStyleValue::ResolvedType> NumericCalculationNode::resolved_type() const { return m_value.visit( [](Number const&) { return CalculatedStyleValue::ResolvedType::Number; }, [](Angle const&) { return CalculatedStyleValue::ResolvedType::Angle; }, [](Flex const&) { return CalculatedStyleValue::ResolvedType::Flex; }, [](Frequency const&) { return CalculatedStyleValue::ResolvedType::Frequency; }, [](Length const&) { return CalculatedStyleValue::ResolvedType::Length; }, [](Percentage const&) { return CalculatedStyleValue::ResolvedType::Percentage; }, [](Resolution const&) { return CalculatedStyleValue::ResolvedType::Resolution; }, [](Time const&) { return CalculatedStyleValue::ResolvedType::Time; }); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> NumericCalculationNode::determine_type(PropertyID property_id) const { // Anything else is a terminal value, whose type is determined based on its CSS type: return m_value.visit( [](Number const&) { // -> <number> // -> <integer> // the type is «[ ]» (empty map) return CSSNumericType {}; }, [](Length const&) { // -> <length> // the type is «[ "length" → 1 ]» return CSSNumericType { CSSNumericType::BaseType::Length, 1 }; }, [](Angle const&) { // -> <angle> // the type is «[ "angle" → 1 ]» return CSSNumericType { CSSNumericType::BaseType::Angle, 1 }; }, [](Time const&) { // -> <time> // the type is «[ "time" → 1 ]» return CSSNumericType { CSSNumericType::BaseType::Time, 1 }; }, [](Frequency const&) { // -> <frequency> // the type is «[ "frequency" → 1 ]» return CSSNumericType { CSSNumericType::BaseType::Frequency, 1 }; }, [](Resolution const&) { // -> <resolution> // the type is «[ "resolution" → 1 ]» return CSSNumericType { CSSNumericType::BaseType::Resolution, 1 }; }, [](Flex const&) { // -> <flex> // the type is «[ "flex" → 1 ]» return CSSNumericType { CSSNumericType::BaseType::Flex, 1 }; }, // NOTE: <calc-constant> is a separate node type. (FIXME: Should it be?) [property_id](Percentage const&) { // -> <percentage> // If, in the context in which the math function containing this calculation is placed, // <percentage>s are resolved relative to another type of value (such as in width, // where <percentage> is resolved against a <length>), and that other type is not <number>, // the type is determined as the other type. auto percentage_resolved_type = property_resolves_percentages_relative_to(property_id); if (percentage_resolved_type.has_value() && percentage_resolved_type != ValueType::Number && percentage_resolved_type != ValueType::Percentage) { auto base_type = CSSNumericType::base_type_from_value_type(*percentage_resolved_type); VERIFY(base_type.has_value()); return CSSNumericType { base_type.value(), 1 }; } // Otherwise, the type is «[ "percent" → 1 ]». return CSSNumericType { CSSNumericType::BaseType::Percent, 1 }; }); // In all cases, the associated percent hint is null. } bool NumericCalculationNode::contains_percentage() const { return m_value.has<Percentage>(); } CalculatedStyleValue::CalculationResult NumericCalculationNode::resolve(Optional<Length::ResolutionContext const&>, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { if (m_value.has<Percentage>()) { // NOTE: Depending on whether percentage_basis is set, the caller of resolve() is expecting a raw percentage or // resolved length. return percentage_basis.visit( [&](Empty const&) -> CalculatedStyleValue::CalculationResult { return m_value; }, [&](auto const& value) { return CalculatedStyleValue::CalculationResult(value.percentage_of(m_value.get<Percentage>())); }); } return m_value; } void NumericCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}NUMERIC({})\n", "", indent, m_value.visit([](auto& it) { return it.to_string(); })); } bool NumericCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value == static_cast<NumericCalculationNode const&>(other).m_value; } NonnullOwnPtr<SumCalculationNode> SumCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values) { return adopt_own(*new (nothrow) SumCalculationNode(move(values))); } SumCalculationNode::SumCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values) : CalculationNode(Type::Sum) , m_values(move(values)) { VERIFY(!m_values.is_empty()); } SumCalculationNode::~SumCalculationNode() = default; String SumCalculationNode::to_string() const { bool first = true; StringBuilder builder; for (auto& value : m_values) { if (!first) builder.append(" + "sv); builder.append(value->to_string()); first = false; } return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> SumCalculationNode::resolved_type() const { // FIXME: Implement https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation // For now, this is just ad-hoc, based on the old implementation. Optional<CalculatedStyleValue::ResolvedType> type; for (auto const& value : m_values) { auto maybe_value_type = value->resolved_type(); if (!maybe_value_type.has_value()) return {}; auto value_type = maybe_value_type.value(); if (!type.has_value()) { type = value_type; continue; } // At + or -, check that both sides have the same type, or that one side is a <number> and the other is an <integer>. // If both sides are the same type, resolve to that type. if (value_type == type) continue; // If one side is a <number> and the other is an <integer>, resolve to <number>. if (is_number(*type) && is_number(value_type)) { type = CalculatedStyleValue::ResolvedType::Number; continue; } // FIXME: calc() handles <percentage> by allowing them to pretend to be whatever <dimension> type is allowed at this location. // Since we can't easily check what that type is, we just allow <percentage> to combine with any other <dimension> type. if (type == CalculatedStyleValue::ResolvedType::Percentage && is_dimension(value_type)) { type = value_type; continue; } if (is_dimension(*type) && value_type == CalculatedStyleValue::ResolvedType::Percentage) continue; return {}; } return type; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> SumCalculationNode::determine_type(PropertyID property_id) const { // At a + or - sub-expression, attempt to add the types of the left and right arguments. // If this returns failure, the entire calculation’s type is failure. // Otherwise, the sub-expression’s type is the returned type. return add_the_types(m_values, property_id); } bool SumCalculationNode::contains_percentage() const { for (auto const& value : m_values) { if (value->contains_percentage()) return true; } return false; } CalculatedStyleValue::CalculationResult SumCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { Optional<CalculatedStyleValue::CalculationResult> total; for (auto& additional_product : m_values) { auto additional_value = additional_product->resolve(context, percentage_basis); if (!total.has_value()) { total = additional_value; continue; } total->add(additional_value, context, percentage_basis); } return total.value(); } void SumCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { for (auto& item : m_values) { item->for_each_child_node(callback); callback(item); } } void SumCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}SUM:\n", "", indent); for (auto const& item : m_values) item->dump(builder, indent + 2); } bool SumCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; if (m_values.size() != static_cast<SumCalculationNode const&>(other).m_values.size()) return false; for (size_t i = 0; i < m_values.size(); ++i) { if (!m_values[i]->equals(*static_cast<SumCalculationNode const&>(other).m_values[i])) return false; } return true; } NonnullOwnPtr<ProductCalculationNode> ProductCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values) { return adopt_own(*new (nothrow) ProductCalculationNode(move(values))); } ProductCalculationNode::ProductCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values) : CalculationNode(Type::Product) , m_values(move(values)) { VERIFY(!m_values.is_empty()); } ProductCalculationNode::~ProductCalculationNode() = default; String ProductCalculationNode::to_string() const { bool first = true; StringBuilder builder; for (auto& value : m_values) { if (!first) builder.append(" * "sv); builder.append(value->to_string()); first = false; } return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> ProductCalculationNode::resolved_type() const { // FIXME: Implement https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation // For now, this is just ad-hoc, based on the old implementation. Optional<CalculatedStyleValue::ResolvedType> type; for (auto const& value : m_values) { auto maybe_value_type = value->resolved_type(); if (!maybe_value_type.has_value()) return {}; auto value_type = maybe_value_type.value(); if (!type.has_value()) { type = value_type; continue; } // At *, check that at least one side is <number>. if (!(is_number(*type) || is_number(value_type))) return {}; // If both sides are <integer>, resolve to <integer>. if (type == CalculatedStyleValue::ResolvedType::Integer && value_type == CalculatedStyleValue::ResolvedType::Integer) { type = CalculatedStyleValue::ResolvedType::Integer; } else { // Otherwise, resolve to the type of the other side. if (is_number(*type)) type = value_type; } } return type; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> ProductCalculationNode::determine_type(PropertyID property_id) const { // At a * sub-expression, multiply the types of the left and right arguments. // The sub-expression’s type is the returned result. Optional<CSSNumericType> left_type; for (auto const& value : m_values) { auto right_type = value->determine_type(property_id); if (!right_type.has_value()) return {}; if (left_type.has_value()) { left_type = left_type->multiplied_by(right_type.value()); } else { left_type = right_type; } if (!left_type.has_value()) return {}; } return left_type; } bool ProductCalculationNode::contains_percentage() const { for (auto const& value : m_values) { if (value->contains_percentage()) return true; } return false; } CalculatedStyleValue::CalculationResult ProductCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { Optional<CalculatedStyleValue::CalculationResult> total; for (auto& additional_product : m_values) { auto additional_value = additional_product->resolve(context, percentage_basis); if (!total.has_value()) { total = additional_value; continue; } total->multiply_by(additional_value, context); } return total.value(); } void ProductCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { for (auto& item : m_values) { item->for_each_child_node(callback); callback(item); } } void ProductCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}PRODUCT:\n", "", indent); for (auto const& item : m_values) item->dump(builder, indent + 2); } bool ProductCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; if (m_values.size() != static_cast<ProductCalculationNode const&>(other).m_values.size()) return false; for (size_t i = 0; i < m_values.size(); ++i) { if (!m_values[i]->equals(*static_cast<ProductCalculationNode const&>(other).m_values[i])) return false; } return true; } NonnullOwnPtr<NegateCalculationNode> NegateCalculationNode::create(NonnullOwnPtr<Web::CSS::CalculationNode> value) { return adopt_own(*new (nothrow) NegateCalculationNode(move(value))); } NegateCalculationNode::NegateCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Negate) , m_value(move(value)) { } NegateCalculationNode::~NegateCalculationNode() = default; String NegateCalculationNode::to_string() const { return MUST(String::formatted("(0 - {})", m_value->to_string())); } Optional<CalculatedStyleValue::ResolvedType> NegateCalculationNode::resolved_type() const { return m_value->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> NegateCalculationNode::determine_type(PropertyID property_id) const { // NOTE: `- foo` doesn't change the type return m_value->determine_type(property_id); } bool NegateCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult NegateCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto child_value = m_value->resolve(context, percentage_basis); child_value.negate(); return child_value; } void NegateCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void NegateCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}NEGATE:\n", "", indent); m_value->dump(builder, indent + 2); } bool NegateCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<NegateCalculationNode const&>(other).m_value); } NonnullOwnPtr<InvertCalculationNode> InvertCalculationNode::create(NonnullOwnPtr<Web::CSS::CalculationNode> value) { return adopt_own(*new (nothrow) InvertCalculationNode(move(value))); } InvertCalculationNode::InvertCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Invert) , m_value(move(value)) { } InvertCalculationNode::~InvertCalculationNode() = default; String InvertCalculationNode::to_string() const { return MUST(String::formatted("(1 / {})", m_value->to_string())); } Optional<CalculatedStyleValue::ResolvedType> InvertCalculationNode::resolved_type() const { auto type = m_value->resolved_type(); if (type == CalculatedStyleValue::ResolvedType::Integer) return CalculatedStyleValue::ResolvedType::Number; return type; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> InvertCalculationNode::determine_type(PropertyID property_id) const { // At a / sub-expression, let left type be the result of finding the types of its left argument, // and right type be the result of finding the types of its right argument and then inverting it. // The sub-expression’s type is the result of multiplying the left type and right type. // NOTE: An InvertCalculationNode only represents the right argument here, and the multiplication // is handled in the parent ProductCalculationNode. return m_value->determine_type(property_id).map([](auto& it) { return it.inverted(); }); } bool InvertCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult InvertCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto child_value = m_value->resolve(context, percentage_basis); child_value.invert(); return child_value; } void InvertCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void InvertCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}INVERT:\n", "", indent); m_value->dump(builder, indent + 2); } bool InvertCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<InvertCalculationNode const&>(other).m_value); } NonnullOwnPtr<MinCalculationNode> MinCalculationNode::create(Vector<NonnullOwnPtr<Web::CSS::CalculationNode>> values) { return adopt_own(*new (nothrow) MinCalculationNode(move(values))); } MinCalculationNode::MinCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values) : CalculationNode(Type::Min) , m_values(move(values)) { } MinCalculationNode::~MinCalculationNode() = default; String MinCalculationNode::to_string() const { StringBuilder builder; builder.append("min("sv); for (size_t i = 0; i < m_values.size(); ++i) { if (i != 0) builder.append(", "sv); builder.append(m_values[i]->to_string()); } builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> MinCalculationNode::resolved_type() const { // NOTE: We check during parsing that all values have the same type. return m_values[0]->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> MinCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. return add_the_types(m_values, property_id); } bool MinCalculationNode::contains_percentage() const { for (auto const& value : m_values) { if (value->contains_percentage()) return true; } return false; } CalculatedStyleValue::CalculationResult MinCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { CalculatedStyleValue::CalculationResult smallest_node = m_values.first()->resolve(context, percentage_basis); auto smallest_value = resolve_value(smallest_node.value(), context); for (size_t i = 1; i < m_values.size(); i++) { auto child_resolved = m_values[i]->resolve(context, percentage_basis); auto child_value = resolve_value(child_resolved.value(), context); if (child_value < smallest_value) { smallest_value = child_value; smallest_node = child_resolved; } } return smallest_node; } void MinCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { for (auto& value : m_values) { value->for_each_child_node(callback); callback(value); } } void MinCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}MIN:\n", "", indent); for (auto const& value : m_values) value->dump(builder, indent + 2); } bool MinCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; if (m_values.size() != static_cast<MinCalculationNode const&>(other).m_values.size()) return false; for (size_t i = 0; i < m_values.size(); ++i) { if (!m_values[i]->equals(*static_cast<MinCalculationNode const&>(other).m_values[i])) return false; } return true; } NonnullOwnPtr<MaxCalculationNode> MaxCalculationNode::create(Vector<NonnullOwnPtr<Web::CSS::CalculationNode>> values) { return adopt_own(*new (nothrow) MaxCalculationNode(move(values))); } MaxCalculationNode::MaxCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values) : CalculationNode(Type::Max) , m_values(move(values)) { } MaxCalculationNode::~MaxCalculationNode() = default; String MaxCalculationNode::to_string() const { StringBuilder builder; builder.append("max("sv); for (size_t i = 0; i < m_values.size(); ++i) { if (i != 0) builder.append(", "sv); builder.append(m_values[i]->to_string()); } builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> MaxCalculationNode::resolved_type() const { // NOTE: We check during parsing that all values have the same type. return m_values[0]->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> MaxCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. return add_the_types(m_values, property_id); } bool MaxCalculationNode::contains_percentage() const { for (auto const& value : m_values) { if (value->contains_percentage()) return true; } return false; } CalculatedStyleValue::CalculationResult MaxCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { CalculatedStyleValue::CalculationResult largest_node = m_values.first()->resolve(context, percentage_basis); auto largest_value = resolve_value(largest_node.value(), context); for (size_t i = 1; i < m_values.size(); i++) { auto child_resolved = m_values[i]->resolve(context, percentage_basis); auto child_value = resolve_value(child_resolved.value(), context); if (child_value > largest_value) { largest_value = child_value; largest_node = child_resolved; } } return largest_node; } void MaxCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { for (auto& value : m_values) { value->for_each_child_node(callback); callback(value); } } void MaxCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}MAX:\n", "", indent); for (auto const& value : m_values) value->dump(builder, indent + 2); } bool MaxCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; if (m_values.size() != static_cast<MaxCalculationNode const&>(other).m_values.size()) return false; for (size_t i = 0; i < m_values.size(); ++i) { if (!m_values[i]->equals(*static_cast<MaxCalculationNode const&>(other).m_values[i])) return false; } return true; } NonnullOwnPtr<ClampCalculationNode> ClampCalculationNode::create(NonnullOwnPtr<CalculationNode> min, NonnullOwnPtr<CalculationNode> center, NonnullOwnPtr<CalculationNode> max) { return adopt_own(*new (nothrow) ClampCalculationNode(move(min), move(center), move(max))); } ClampCalculationNode::ClampCalculationNode(NonnullOwnPtr<CalculationNode> min, NonnullOwnPtr<CalculationNode> center, NonnullOwnPtr<CalculationNode> max) : CalculationNode(Type::Clamp) , m_min_value(move(min)) , m_center_value(move(center)) , m_max_value(move(max)) { } ClampCalculationNode::~ClampCalculationNode() = default; String ClampCalculationNode::to_string() const { StringBuilder builder; builder.append("clamp("sv); builder.append(m_min_value->to_string()); builder.append(", "sv); builder.append(m_center_value->to_string()); builder.append(", "sv); builder.append(m_max_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> ClampCalculationNode::resolved_type() const { // NOTE: We check during parsing that all values have the same type. return m_min_value->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> ClampCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. auto min_type = m_min_value->determine_type(property_id); auto center_type = m_center_value->determine_type(property_id); auto max_type = m_max_value->determine_type(property_id); if (!min_type.has_value() || !center_type.has_value() || !max_type.has_value()) return {}; auto result = min_type->added_to(*center_type); if (!result.has_value()) return {}; return result->added_to(*max_type); } bool ClampCalculationNode::contains_percentage() const { return m_min_value->contains_percentage() || m_center_value->contains_percentage() || m_max_value->contains_percentage(); } CalculatedStyleValue::CalculationResult ClampCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto min_node = m_min_value->resolve(context, percentage_basis); auto center_node = m_center_value->resolve(context, percentage_basis); auto max_node = m_max_value->resolve(context, percentage_basis); auto min_value = resolve_value(min_node.value(), context); auto center_value = resolve_value(center_node.value(), context); auto max_value = resolve_value(max_node.value(), context); // NOTE: The value should be returned as "max(MIN, min(VAL, MAX))" auto chosen_value = max(min_value, min(center_value, max_value)); if (chosen_value == min_value) return min_node; if (chosen_value == center_value) return center_node; if (chosen_value == max_value) return max_node; VERIFY_NOT_REACHED(); } void ClampCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_min_value->for_each_child_node(callback); m_center_value->for_each_child_node(callback); m_max_value->for_each_child_node(callback); callback(m_min_value); callback(m_center_value); callback(m_max_value); } void ClampCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}CLAMP:\n", "", indent); m_min_value->dump(builder, indent + 2); m_center_value->dump(builder, indent + 2); m_max_value->dump(builder, indent + 2); } bool ClampCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_min_value->equals(*static_cast<ClampCalculationNode const&>(other).m_min_value) && m_center_value->equals(*static_cast<ClampCalculationNode const&>(other).m_center_value) && m_max_value->equals(*static_cast<ClampCalculationNode const&>(other).m_max_value); } NonnullOwnPtr<AbsCalculationNode> AbsCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) AbsCalculationNode(move(value))); } AbsCalculationNode::AbsCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Abs) , m_value(move(value)) { } AbsCalculationNode::~AbsCalculationNode() = default; String AbsCalculationNode::to_string() const { StringBuilder builder; builder.append("abs("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> AbsCalculationNode::resolved_type() const { return m_value->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> AbsCalculationNode::determine_type(PropertyID property_id) const { // The type of its contained calculation. return m_value->determine_type(property_id); } bool AbsCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult AbsCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto resolved_type = m_value->resolved_type().value(); auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); if (node_a_value < 0) return to_resolved_type(resolved_type, -node_a_value); return node_a; } void AbsCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void AbsCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}ABS: {}\n", "", indent, to_string()); } bool AbsCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<AbsCalculationNode const&>(other).m_value); } NonnullOwnPtr<SignCalculationNode> SignCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) SignCalculationNode(move(value))); } SignCalculationNode::SignCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Sign) , m_value(move(value)) { } SignCalculationNode::~SignCalculationNode() = default; String SignCalculationNode::to_string() const { StringBuilder builder; builder.append("sign("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> SignCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Integer; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> SignCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } bool SignCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult SignCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); if (node_a_value < 0) return { Number(Number::Type::Integer, -1) }; if (node_a_value > 0) return { Number(Number::Type::Integer, 1) }; return { Number(Number::Type::Integer, 0) }; } void SignCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void SignCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}SIGN: {}\n", "", indent, to_string()); } bool SignCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<SignCalculationNode const&>(other).m_value); } NonnullOwnPtr<ConstantCalculationNode> ConstantCalculationNode::create(ConstantType constant) { return adopt_own(*new (nothrow) ConstantCalculationNode(constant)); } ConstantCalculationNode::ConstantCalculationNode(ConstantType constant) : CalculationNode(Type::Constant) , m_constant(constant) { } ConstantCalculationNode::~ConstantCalculationNode() = default; String ConstantCalculationNode::to_string() const { switch (m_constant) { case CalculationNode::ConstantType::E: return "e"_string; case CalculationNode::ConstantType::Pi: return "pi"_string; case CalculationNode::ConstantType::Infinity: return "infinity"_string; case CalculationNode::ConstantType::MinusInfinity: return "-infinity"_string; case CalculationNode::ConstantType::NaN: return "NaN"_string; } VERIFY_NOT_REACHED(); } Optional<CalculatedStyleValue::ResolvedType> ConstantCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> ConstantCalculationNode::determine_type(PropertyID) const { // Anything else is a terminal value, whose type is determined based on its CSS type: // -> <calc-constant> // the type is «[ ]» (empty map) return CSSNumericType {}; } CalculatedStyleValue::CalculationResult ConstantCalculationNode::resolve([[maybe_unused]] Optional<Length::ResolutionContext const&> context, [[maybe_unused]] CalculatedStyleValue::PercentageBasis const& percentage_basis) const { switch (m_constant) { case CalculationNode::ConstantType::E: return { Number(Number::Type::Number, M_E) }; case CalculationNode::ConstantType::Pi: return { Number(Number::Type::Number, M_PI) }; // FIXME: We need to keep track of Infinity and NaN across all nodes, since they require special handling. case CalculationNode::ConstantType::Infinity: return { Number(Number::Type::Number, NumericLimits<double>::max()) }; case CalculationNode::ConstantType::MinusInfinity: return { Number(Number::Type::Number, NumericLimits<double>::lowest()) }; case CalculationNode::ConstantType::NaN: return { Number(Number::Type::Number, NAN) }; } VERIFY_NOT_REACHED(); } void ConstantCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}CONSTANT: {}\n", "", indent, to_string()); } bool ConstantCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_constant == static_cast<ConstantCalculationNode const&>(other).m_constant; } NonnullOwnPtr<SinCalculationNode> SinCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) SinCalculationNode(move(value))); } SinCalculationNode::SinCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Sin) , m_value(move(value)) { } SinCalculationNode::~SinCalculationNode() = default; String SinCalculationNode::to_string() const { StringBuilder builder; builder.append("sin("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> SinCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> SinCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } bool SinCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult SinCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value_radians(node_a.value()); auto result = sin(node_a_value); return { Number(Number::Type::Number, result) }; } void SinCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void SinCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}SIN: {}\n", "", indent, to_string()); } bool SinCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<SinCalculationNode const&>(other).m_value); } NonnullOwnPtr<CosCalculationNode> CosCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) CosCalculationNode(move(value))); } CosCalculationNode::CosCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Cos) , m_value(move(value)) { } CosCalculationNode::~CosCalculationNode() = default; String CosCalculationNode::to_string() const { StringBuilder builder; builder.append("cos("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> CosCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> CosCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } bool CosCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult CosCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value_radians(node_a.value()); auto result = cos(node_a_value); return { Number(Number::Type::Number, result) }; } void CosCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void CosCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}COS: {}\n", "", indent, to_string()); } bool CosCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<CosCalculationNode const&>(other).m_value); } NonnullOwnPtr<TanCalculationNode> TanCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) TanCalculationNode(move(value))); } TanCalculationNode::TanCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Tan) , m_value(move(value)) { } TanCalculationNode::~TanCalculationNode() = default; String TanCalculationNode::to_string() const { StringBuilder builder; builder.append("tan("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> TanCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> TanCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } bool TanCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult TanCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value_radians(node_a.value()); auto result = tan(node_a_value); return { Number(Number::Type::Number, result) }; } void TanCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void TanCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}TAN: {}\n", "", indent, to_string()); } bool TanCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<TanCalculationNode const&>(other).m_value); } NonnullOwnPtr<AsinCalculationNode> AsinCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) AsinCalculationNode(move(value))); } AsinCalculationNode::AsinCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Asin) , m_value(move(value)) { } AsinCalculationNode::~AsinCalculationNode() = default; String AsinCalculationNode::to_string() const { StringBuilder builder; builder.append("asin("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> AsinCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Angle; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> AsinCalculationNode::determine_type(PropertyID) const { // «[ "angle" → 1 ]». return CSSNumericType { CSSNumericType::BaseType::Angle, 1 }; } bool AsinCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult AsinCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto result = asin(node_a_value); return { Angle(result, Angle::Type::Rad) }; } void AsinCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void AsinCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}ASIN: {}\n", "", indent, to_string()); } bool AsinCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<AsinCalculationNode const&>(other).m_value); } NonnullOwnPtr<AcosCalculationNode> AcosCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) AcosCalculationNode(move(value))); } AcosCalculationNode::AcosCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Acos) , m_value(move(value)) { } AcosCalculationNode::~AcosCalculationNode() = default; String AcosCalculationNode::to_string() const { StringBuilder builder; builder.append("acos("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> AcosCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Angle; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> AcosCalculationNode::determine_type(PropertyID) const { // «[ "angle" → 1 ]». return CSSNumericType { CSSNumericType::BaseType::Angle, 1 }; } bool AcosCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult AcosCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto result = acos(node_a_value); return { Angle(result, Angle::Type::Rad) }; } void AcosCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void AcosCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}ACOS: {}\n", "", indent, to_string()); } bool AcosCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<AcosCalculationNode const&>(other).m_value); } NonnullOwnPtr<AtanCalculationNode> AtanCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) AtanCalculationNode(move(value))); } AtanCalculationNode::AtanCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Atan) , m_value(move(value)) { } AtanCalculationNode::~AtanCalculationNode() = default; String AtanCalculationNode::to_string() const { StringBuilder builder; builder.append("atan("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> AtanCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Angle; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> AtanCalculationNode::determine_type(PropertyID) const { // «[ "angle" → 1 ]». return CSSNumericType { CSSNumericType::BaseType::Angle, 1 }; } bool AtanCalculationNode::contains_percentage() const { return m_value->contains_percentage(); } CalculatedStyleValue::CalculationResult AtanCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto result = atan(node_a_value); return { Angle(result, Angle::Type::Rad) }; } void AtanCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void AtanCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}ATAN: {}\n", "", indent, to_string()); } bool AtanCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<AtanCalculationNode const&>(other).m_value); } NonnullOwnPtr<Atan2CalculationNode> Atan2CalculationNode::create(NonnullOwnPtr<CalculationNode> y, NonnullOwnPtr<CalculationNode> x) { return adopt_own(*new (nothrow) Atan2CalculationNode(move(y), move(x))); } Atan2CalculationNode::Atan2CalculationNode(NonnullOwnPtr<CalculationNode> y, NonnullOwnPtr<CalculationNode> x) : CalculationNode(Type::Atan2) , m_y(move(y)) , m_x(move(x)) { } Atan2CalculationNode::~Atan2CalculationNode() = default; String Atan2CalculationNode::to_string() const { StringBuilder builder; builder.append("atan2("sv); builder.append(m_y->to_string()); builder.append(", "sv); builder.append(m_x->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> Atan2CalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Angle; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> Atan2CalculationNode::determine_type(PropertyID) const { // «[ "angle" → 1 ]». return CSSNumericType { CSSNumericType::BaseType::Angle, 1 }; } bool Atan2CalculationNode::contains_percentage() const { return m_y->contains_percentage() || m_x->contains_percentage(); } CalculatedStyleValue::CalculationResult Atan2CalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_y->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto node_b = m_x->resolve(context, percentage_basis); auto node_b_value = resolve_value(node_b.value(), context); auto result = atan2(node_a_value, node_b_value); return { Angle(result, Angle::Type::Rad) }; } void Atan2CalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_y->for_each_child_node(callback); m_x->for_each_child_node(callback); callback(m_y); callback(m_x); } void Atan2CalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}ATAN2: {}\n", "", indent, to_string()); } bool Atan2CalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_x->equals(*static_cast<Atan2CalculationNode const&>(other).m_x) && m_y->equals(*static_cast<Atan2CalculationNode const&>(other).m_y); } NonnullOwnPtr<PowCalculationNode> PowCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) { return adopt_own(*new (nothrow) PowCalculationNode(move(x), move(y))); } PowCalculationNode::PowCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) : CalculationNode(Type::Pow) , m_x(move(x)) , m_y(move(y)) { } PowCalculationNode::~PowCalculationNode() = default; String PowCalculationNode::to_string() const { StringBuilder builder; builder.append("pow("sv); builder.append(m_x->to_string()); builder.append(", "sv); builder.append(m_y->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> PowCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> PowCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } CalculatedStyleValue::CalculationResult PowCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_x->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto node_b = m_y->resolve(context, percentage_basis); auto node_b_value = resolve_value(node_b.value(), context); auto result = pow(node_a_value, node_b_value); return { Number(Number::Type::Number, result) }; } void PowCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_x->for_each_child_node(callback); m_y->for_each_child_node(callback); callback(m_x); callback(m_y); } void PowCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}POW: {}\n", "", indent, to_string()); } bool PowCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_x->equals(*static_cast<PowCalculationNode const&>(other).m_x) && m_y->equals(*static_cast<PowCalculationNode const&>(other).m_y); } NonnullOwnPtr<SqrtCalculationNode> SqrtCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) SqrtCalculationNode(move(value))); } SqrtCalculationNode::SqrtCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Sqrt) , m_value(move(value)) { } SqrtCalculationNode::~SqrtCalculationNode() = default; String SqrtCalculationNode::to_string() const { StringBuilder builder; builder.append("sqrt("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> SqrtCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> SqrtCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } CalculatedStyleValue::CalculationResult SqrtCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto result = sqrt(node_a_value); return { Number(Number::Type::Number, result) }; } void SqrtCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void SqrtCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}SQRT: {}\n", "", indent, to_string()); } bool SqrtCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<SqrtCalculationNode const&>(other).m_value); } NonnullOwnPtr<HypotCalculationNode> HypotCalculationNode::create(Vector<NonnullOwnPtr<Web::CSS::CalculationNode>> values) { return adopt_own(*new (nothrow) HypotCalculationNode(move(values))); } HypotCalculationNode::HypotCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values) : CalculationNode(Type::Hypot) , m_values(move(values)) { } HypotCalculationNode::~HypotCalculationNode() = default; String HypotCalculationNode::to_string() const { StringBuilder builder; builder.append("hypot("sv); for (size_t i = 0; i < m_values.size(); ++i) { if (i != 0) builder.append(", "sv); builder.append(m_values[i]->to_string()); } builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> HypotCalculationNode::resolved_type() const { // NOTE: We check during parsing that all values have the same type. return m_values[0]->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> HypotCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. return add_the_types(m_values, property_id); } bool HypotCalculationNode::contains_percentage() const { for (auto const& value : m_values) { if (value->contains_percentage()) return true; } return false; } CalculatedStyleValue::CalculationResult HypotCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { double square_sum = 0.0; for (auto const& value : m_values) { auto child_resolved = value->resolve(context, percentage_basis); auto child_value = resolve_value(child_resolved.value(), context); square_sum += child_value * child_value; } auto result = sqrt(square_sum); return to_resolved_type(resolved_type().value(), result); } void HypotCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { for (auto& value : m_values) { value->for_each_child_node(callback); callback(value); } } void HypotCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}HYPOT:\n", "", indent); for (auto const& value : m_values) value->dump(builder, indent + 2); } bool HypotCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; for (size_t i = 0; i < m_values.size(); ++i) { if (!m_values[i]->equals(*static_cast<HypotCalculationNode const&>(other).m_values[i])) return false; } return true; } NonnullOwnPtr<LogCalculationNode> LogCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) { return adopt_own(*new (nothrow) LogCalculationNode(move(x), move(y))); } LogCalculationNode::LogCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) : CalculationNode(Type::Log) , m_x(move(x)) , m_y(move(y)) { } LogCalculationNode::~LogCalculationNode() = default; String LogCalculationNode::to_string() const { StringBuilder builder; builder.append("log("sv); builder.append(m_x->to_string()); builder.append(", "sv); builder.append(m_y->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> LogCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> LogCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } CalculatedStyleValue::CalculationResult LogCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_x->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto node_b = m_y->resolve(context, percentage_basis); auto node_b_value = resolve_value(node_b.value(), context); auto result = log2(node_a_value) / log2(node_b_value); return { Number(Number::Type::Number, result) }; } void LogCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_x->for_each_child_node(callback); m_y->for_each_child_node(callback); callback(m_x); callback(m_y); } void LogCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}LOG: {}\n", "", indent, to_string()); } bool LogCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_x->equals(*static_cast<LogCalculationNode const&>(other).m_x) && m_y->equals(*static_cast<LogCalculationNode const&>(other).m_y); } NonnullOwnPtr<ExpCalculationNode> ExpCalculationNode::create(NonnullOwnPtr<CalculationNode> value) { return adopt_own(*new (nothrow) ExpCalculationNode(move(value))); } ExpCalculationNode::ExpCalculationNode(NonnullOwnPtr<CalculationNode> value) : CalculationNode(Type::Exp) , m_value(move(value)) { } ExpCalculationNode::~ExpCalculationNode() = default; String ExpCalculationNode::to_string() const { StringBuilder builder; builder.append("exp("sv); builder.append(m_value->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> ExpCalculationNode::resolved_type() const { return CalculatedStyleValue::ResolvedType::Number; } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> ExpCalculationNode::determine_type(PropertyID) const { // «[ ]» (empty map). return CSSNumericType {}; } CalculatedStyleValue::CalculationResult ExpCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto node_a = m_value->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto result = exp(node_a_value); return { Number(Number::Type::Number, result) }; } void ExpCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_value->for_each_child_node(callback); callback(m_value); } void ExpCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}EXP: {}\n", "", indent, to_string()); } bool ExpCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_value->equals(*static_cast<ExpCalculationNode const&>(other).m_value); } NonnullOwnPtr<RoundCalculationNode> RoundCalculationNode::create(RoundingStrategy strategy, NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) { return adopt_own(*new (nothrow) RoundCalculationNode(strategy, move(x), move(y))); } RoundCalculationNode::RoundCalculationNode(RoundingStrategy mode, NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) : CalculationNode(Type::Round) , m_strategy(mode) , m_x(move(x)) , m_y(move(y)) { } RoundCalculationNode::~RoundCalculationNode() = default; String RoundCalculationNode::to_string() const { StringBuilder builder; builder.append("round("sv); builder.append(CSS::to_string(m_strategy)); builder.append(", "sv); builder.append(m_x->to_string()); builder.append(", "sv); builder.append(m_y->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> RoundCalculationNode::resolved_type() const { // Note: We check during parsing that all values have the same type return m_x->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> RoundCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. auto x_type = m_x->determine_type(property_id); auto y_type = m_y->determine_type(property_id); if (!x_type.has_value() || !y_type.has_value()) return {}; return x_type->added_to(*y_type); } bool RoundCalculationNode::contains_percentage() const { return m_x->contains_percentage() || m_y->contains_percentage(); } CalculatedStyleValue::CalculationResult RoundCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto resolved_type = m_x->resolved_type().value(); auto node_a = m_x->resolve(context, percentage_basis); auto node_b = m_y->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto node_b_value = resolve_value(node_b.value(), context); auto upper_b = ceil(node_a_value / node_b_value) * node_b_value; auto lower_b = floor(node_a_value / node_b_value) * node_b_value; if (m_strategy == RoundingStrategy::Nearest) { auto upper_diff = fabs(upper_b - node_a_value); auto lower_diff = fabs(node_a_value - lower_b); auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b; return to_resolved_type(resolved_type, rounded_value); } if (m_strategy == RoundingStrategy::Up) { return to_resolved_type(resolved_type, upper_b); } if (m_strategy == RoundingStrategy::Down) { return to_resolved_type(resolved_type, lower_b); } if (m_strategy == RoundingStrategy::ToZero) { auto upper_diff = fabs(upper_b); auto lower_diff = fabs(lower_b); auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b; return to_resolved_type(resolved_type, rounded_value); } VERIFY_NOT_REACHED(); } void RoundCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_x->for_each_child_node(callback); m_y->for_each_child_node(callback); callback(m_x); callback(m_y); } void RoundCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}ROUND: {}\n", "", indent, to_string()); } bool RoundCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_strategy == static_cast<RoundCalculationNode const&>(other).m_strategy && m_x->equals(*static_cast<RoundCalculationNode const&>(other).m_x) && m_y->equals(*static_cast<RoundCalculationNode const&>(other).m_y); } NonnullOwnPtr<ModCalculationNode> ModCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) { return adopt_own(*new (nothrow) ModCalculationNode(move(x), move(y))); } ModCalculationNode::ModCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) : CalculationNode(Type::Mod) , m_x(move(x)) , m_y(move(y)) { } ModCalculationNode::~ModCalculationNode() = default; String ModCalculationNode::to_string() const { StringBuilder builder; builder.append("mod("sv); builder.append(m_x->to_string()); builder.append(", "sv); builder.append(m_y->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> ModCalculationNode::resolved_type() const { // Note: We check during parsing that all values have the same type return m_x->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> ModCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. auto x_type = m_x->determine_type(property_id); auto y_type = m_y->determine_type(property_id); if (!x_type.has_value() || !y_type.has_value()) return {}; return x_type->added_to(*y_type); } bool ModCalculationNode::contains_percentage() const { return m_x->contains_percentage() || m_y->contains_percentage(); } CalculatedStyleValue::CalculationResult ModCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto resolved_type = m_x->resolved_type().value(); auto node_a = m_x->resolve(context, percentage_basis); auto node_b = m_y->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto node_b_value = resolve_value(node_b.value(), context); auto quotient = floor(node_a_value / node_b_value); auto value = node_a_value - (node_b_value * quotient); return to_resolved_type(resolved_type, value); } void ModCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_x->for_each_child_node(callback); m_y->for_each_child_node(callback); callback(m_x); callback(m_y); } void ModCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}MOD: {}\n", "", indent, to_string()); } bool ModCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_x->equals(*static_cast<ModCalculationNode const&>(other).m_x) && m_y->equals(*static_cast<ModCalculationNode const&>(other).m_y); } NonnullOwnPtr<RemCalculationNode> RemCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) { return adopt_own(*new (nothrow) RemCalculationNode(move(x), move(y))); } RemCalculationNode::RemCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y) : CalculationNode(Type::Rem) , m_x(move(x)) , m_y(move(y)) { } RemCalculationNode::~RemCalculationNode() = default; String RemCalculationNode::to_string() const { StringBuilder builder; builder.append("rem("sv); builder.append(m_x->to_string()); builder.append(", "sv); builder.append(m_y->to_string()); builder.append(")"sv); return MUST(builder.to_string()); } Optional<CalculatedStyleValue::ResolvedType> RemCalculationNode::resolved_type() const { // Note: We check during parsing that all values have the same type return m_x->resolved_type(); } // https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation Optional<CSSNumericType> RemCalculationNode::determine_type(PropertyID property_id) const { // The result of adding the types of its comma-separated calculations. auto x_type = m_x->determine_type(property_id); auto y_type = m_y->determine_type(property_id); if (!x_type.has_value() || !y_type.has_value()) return {}; return x_type->added_to(*y_type); } bool RemCalculationNode::contains_percentage() const { return m_x->contains_percentage() || m_y->contains_percentage(); } CalculatedStyleValue::CalculationResult RemCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const { auto resolved_type = m_x->resolved_type().value(); auto node_a = m_x->resolve(context, percentage_basis); auto node_b = m_y->resolve(context, percentage_basis); auto node_a_value = resolve_value(node_a.value(), context); auto node_b_value = resolve_value(node_b.value(), context); auto value = fmod(node_a_value, node_b_value); return to_resolved_type(resolved_type, value); } void RemCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback) { m_x->for_each_child_node(callback); m_y->for_each_child_node(callback); callback(m_x); callback(m_y); } void RemCalculationNode::dump(StringBuilder& builder, int indent) const { builder.appendff("{: >{}}REM: {}\n", "", indent, to_string()); } bool RemCalculationNode::equals(CalculationNode const& other) const { if (this == &other) return true; if (type() != other.type()) return false; return m_x->equals(*static_cast<RemCalculationNode const&>(other).m_x) && m_y->equals(*static_cast<RemCalculationNode const&>(other).m_y); } void CalculatedStyleValue::CalculationResult::add(CalculationResult const& other, Optional<Length::ResolutionContext const&> context, PercentageBasis const& percentage_basis) { add_or_subtract_internal(SumOperation::Add, other, context, percentage_basis); } void CalculatedStyleValue::CalculationResult::subtract(CalculationResult const& other, Optional<Length::ResolutionContext const&> context, PercentageBasis const& percentage_basis) { add_or_subtract_internal(SumOperation::Subtract, other, context, percentage_basis); } void CalculatedStyleValue::CalculationResult::add_or_subtract_internal(SumOperation op, CalculationResult const& other, Optional<Length::ResolutionContext const&> context, PercentageBasis const& percentage_basis) { // We know from validation when resolving the type, that "both sides have the same type, or that one side is a <number> and the other is an <integer>". // Though, having the same type may mean that one side is a <dimension> and the other a <percentage>. // Note: This is almost identical to ::add() m_value.visit( [&](Number const& number) { auto other_number = other.m_value.get<Number>(); if (op == SumOperation::Add) { m_value = number + other_number; } else { m_value = number - other_number; } }, [&](Angle const& angle) { auto this_degrees = angle.to_degrees(); if (other.m_value.has<Angle>()) { auto other_degrees = other.m_value.get<Angle>().to_degrees(); if (op == SumOperation::Add) m_value = Angle::make_degrees(this_degrees + other_degrees); else m_value = Angle::make_degrees(this_degrees - other_degrees); } else { VERIFY(percentage_basis.has<Angle>()); auto other_degrees = percentage_basis.get<Angle>().percentage_of(other.m_value.get<Percentage>()).to_degrees(); if (op == SumOperation::Add) m_value = Angle::make_degrees(this_degrees + other_degrees); else m_value = Angle::make_degrees(this_degrees - other_degrees); } }, [&](Flex const& flex) { auto this_fr = flex.to_fr(); if (other.m_value.has<Flex>()) { auto other_fr = other.m_value.get<Flex>().to_fr(); if (op == SumOperation::Add) m_value = Flex::make_fr(this_fr + other_fr); else m_value = Flex::make_fr(this_fr - other_fr); } else { VERIFY(percentage_basis.has<Flex>()); auto other_fr = percentage_basis.get<Flex>().percentage_of(other.m_value.get<Percentage>()).to_fr(); if (op == SumOperation::Add) m_value = Flex::make_fr(this_fr + other_fr); else m_value = Flex::make_fr(this_fr - other_fr); } }, [&](Frequency const& frequency) { auto this_hertz = frequency.to_hertz(); if (other.m_value.has<Frequency>()) { auto other_hertz = other.m_value.get<Frequency>().to_hertz(); if (op == SumOperation::Add) m_value = Frequency::make_hertz(this_hertz + other_hertz); else m_value = Frequency::make_hertz(this_hertz - other_hertz); } else { VERIFY(percentage_basis.has<Frequency>()); auto other_hertz = percentage_basis.get<Frequency>().percentage_of(other.m_value.get<Percentage>()).to_hertz(); if (op == SumOperation::Add) m_value = Frequency::make_hertz(this_hertz + other_hertz); else m_value = Frequency::make_hertz(this_hertz - other_hertz); } }, [&](Length const& length) { auto this_px = length.to_px(*context); if (other.m_value.has<Length>()) { auto other_px = other.m_value.get<Length>().to_px(*context); if (op == SumOperation::Add) m_value = Length::make_px(this_px + other_px); else m_value = Length::make_px(this_px - other_px); } else { VERIFY(percentage_basis.has<Length>()); auto other_px = percentage_basis.get<Length>().percentage_of(other.m_value.get<Percentage>()).to_px(*context); if (op == SumOperation::Add) m_value = Length::make_px(this_px + other_px); else m_value = Length::make_px(this_px - other_px); } }, [&](Resolution const& resolution) { auto this_dots_per_pixel = resolution.to_dots_per_pixel(); // NOTE: <resolution-percentage> is not a type, so we don't have to worry about percentages. auto other_dots_per_pixel = other.m_value.get<Resolution>().to_dots_per_pixel(); if (op == SumOperation::Add) m_value = Resolution::make_dots_per_pixel(this_dots_per_pixel + other_dots_per_pixel); else m_value = Resolution::make_dots_per_pixel(this_dots_per_pixel - other_dots_per_pixel); }, [&](Time const& time) { auto this_seconds = time.to_seconds(); if (other.m_value.has<Time>()) { auto other_seconds = other.m_value.get<Time>().to_seconds(); if (op == SumOperation::Add) m_value = Time::make_seconds(this_seconds + other_seconds); else m_value = Time::make_seconds(this_seconds - other_seconds); } else { VERIFY(percentage_basis.has<Time>()); auto other_seconds = percentage_basis.get<Time>().percentage_of(other.m_value.get<Percentage>()).to_seconds(); if (op == SumOperation::Add) m_value = Time::make_seconds(this_seconds + other_seconds); else m_value = Time::make_seconds(this_seconds - other_seconds); } }, [&](Percentage const& percentage) { if (other.m_value.has<Percentage>()) { if (op == SumOperation::Add) m_value = Percentage { percentage.value() + other.m_value.get<Percentage>().value() }; else m_value = Percentage { percentage.value() - other.m_value.get<Percentage>().value() }; return; } // Other side isn't a percentage, so the easiest way to handle it without duplicating all the logic, is just to swap `this` and `other`. CalculationResult new_value = other; if (op == SumOperation::Add) { new_value.add(*this, context, percentage_basis); } else { // Turn 'this - other' into '-other + this', as 'A + B == B + A', but 'A - B != B - A' new_value.multiply_by({ Number { Number::Type::Integer, -1.0f } }, context); new_value.add(*this, context, percentage_basis); } *this = new_value; }); } void CalculatedStyleValue::CalculationResult::multiply_by(CalculationResult const& other, Optional<Length::ResolutionContext const&> context) { // We know from validation when resolving the type, that at least one side must be a <number> or <integer>. // Both of these are represented as a double. VERIFY(m_value.has<Number>() || other.m_value.has<Number>()); bool other_is_number = other.m_value.has<Number>(); m_value.visit( [&](Number const& number) { if (other_is_number) { m_value = number * other.m_value.get<Number>(); } else { // Avoid duplicating all the logic by swapping `this` and `other`. CalculationResult new_value = other; new_value.multiply_by(*this, context); *this = new_value; } }, [&](Angle const& angle) { m_value = Angle::make_degrees(angle.to_degrees() * other.m_value.get<Number>().value()); }, [&](Flex const& flex) { m_value = Flex::make_fr(flex.to_fr() * other.m_value.get<Number>().value()); }, [&](Frequency const& frequency) { m_value = Frequency::make_hertz(frequency.to_hertz() * other.m_value.get<Number>().value()); }, [&](Length const& length) { m_value = Length::make_px(CSSPixels::nearest_value_for(length.to_px(*context) * static_cast<double>(other.m_value.get<Number>().value()))); }, [&](Resolution const& resolution) { m_value = Resolution::make_dots_per_pixel(resolution.to_dots_per_pixel() * other.m_value.get<Number>().value()); }, [&](Time const& time) { m_value = Time::make_seconds(time.to_seconds() * other.m_value.get<Number>().value()); }, [&](Percentage const& percentage) { m_value = Percentage { percentage.value() * other.m_value.get<Number>().value() }; }); } void CalculatedStyleValue::CalculationResult::divide_by(CalculationResult const& other, Optional<Length::ResolutionContext const&> context) { // We know from validation when resolving the type, that `other` must be a <number> or <integer>. // Both of these are represented as a Number. auto denominator = other.m_value.get<Number>().value(); // FIXME: Dividing by 0 is invalid, and should be caught during parsing. VERIFY(denominator != 0.0); m_value.visit( [&](Number const& number) { m_value = Number { Number::Type::Number, number.value() / denominator }; }, [&](Angle const& angle) { m_value = Angle::make_degrees(angle.to_degrees() / denominator); }, [&](Flex const& flex) { m_value = Flex::make_fr(flex.to_fr() / denominator); }, [&](Frequency const& frequency) { m_value = Frequency::make_hertz(frequency.to_hertz() / denominator); }, [&](Length const& length) { m_value = Length::make_px(CSSPixels::nearest_value_for(length.to_px(*context) / static_cast<double>(denominator))); }, [&](Resolution const& resolution) { m_value = Resolution::make_dots_per_pixel(resolution.to_dots_per_pixel() / denominator); }, [&](Time const& time) { m_value = Time::make_seconds(time.to_seconds() / denominator); }, [&](Percentage const& percentage) { m_value = Percentage { percentage.value() / denominator }; }); } void CalculatedStyleValue::CalculationResult::negate() { m_value.visit( [&](Number const& number) { m_value = Number { number.type(), 0 - number.value() }; }, [&](Angle const& angle) { m_value = Angle { 0 - angle.raw_value(), angle.type() }; }, [&](Flex const& flex) { m_value = Flex { 0 - flex.raw_value(), flex.type() }; }, [&](Frequency const& frequency) { m_value = Frequency { 0 - frequency.raw_value(), frequency.type() }; }, [&](Length const& length) { m_value = Length { 0 - length.raw_value(), length.type() }; }, [&](Resolution const& resolution) { m_value = Resolution { 0 - resolution.raw_value(), resolution.type() }; }, [&](Time const& time) { m_value = Time { 0 - time.raw_value(), time.type() }; }, [&](Percentage const& percentage) { m_value = Percentage { 0 - percentage.value() }; }); } void CalculatedStyleValue::CalculationResult::invert() { // FIXME: Correctly handle division by zero. m_value.visit( [&](Number const& number) { m_value = Number { Number::Type::Number, 1 / number.value() }; }, [&](Angle const& angle) { m_value = Angle { 1 / angle.raw_value(), angle.type() }; }, [&](Flex const& flex) { m_value = Flex { 1 / flex.raw_value(), flex.type() }; }, [&](Frequency const& frequency) { m_value = Frequency { 1 / frequency.raw_value(), frequency.type() }; }, [&](Length const& length) { m_value = Length { 1 / length.raw_value(), length.type() }; }, [&](Resolution const& resolution) { m_value = Resolution { 1 / resolution.raw_value(), resolution.type() }; }, [&](Time const& time) { m_value = Time { 1 / time.raw_value(), time.type() }; }, [&](Percentage const& percentage) { m_value = Percentage { 1 / percentage.value() }; }); } String CalculatedStyleValue::to_string() const { // FIXME: Implement this according to https://www.w3.org/TR/css-values-4/#calc-serialize once that stabilizes. return MUST(String::formatted("calc({})", m_calculation->to_string())); } bool CalculatedStyleValue::equals(CSSStyleValue const& other) const { if (type() != other.type()) return false; return m_calculation->equals(*static_cast<CalculatedStyleValue const&>(other).m_calculation); } Optional<Angle> CalculatedStyleValue::resolve_angle() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Angle>()) return result.value().get<Angle>(); return {}; } Optional<Angle> CalculatedStyleValue::resolve_angle_percentage(Angle const& percentage_basis) const { auto result = m_calculation->resolve({}, percentage_basis); return result.value().visit( [&](Angle const& angle) -> Optional<Angle> { return angle; }, [&](Percentage const& percentage) -> Optional<Angle> { return percentage_basis.percentage_of(percentage); }, [&](auto const&) -> Optional<Angle> { return {}; }); } Optional<Flex> CalculatedStyleValue::resolve_flex() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Flex>()) return result.value().get<Flex>(); return {}; } Optional<Frequency> CalculatedStyleValue::resolve_frequency() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Frequency>()) return result.value().get<Frequency>(); return {}; } Optional<Frequency> CalculatedStyleValue::resolve_frequency_percentage(Frequency const& percentage_basis) const { auto result = m_calculation->resolve({}, percentage_basis); return result.value().visit( [&](Frequency const& frequency) -> Optional<Frequency> { return frequency; }, [&](Percentage const& percentage) -> Optional<Frequency> { return percentage_basis.percentage_of(percentage); }, [&](auto const&) -> Optional<Frequency> { return {}; }); } Optional<Length> CalculatedStyleValue::resolve_length(Length::ResolutionContext const& context) const { auto result = m_calculation->resolve(context, {}); if (result.value().has<Length>()) return result.value().get<Length>(); return {}; } Optional<Length> CalculatedStyleValue::resolve_length(Layout::Node const& layout_node) const { return resolve_length(Length::ResolutionContext::for_layout_node(layout_node)); } Optional<Length> CalculatedStyleValue::resolve_length_percentage(Layout::Node const& layout_node, Length const& percentage_basis) const { return resolve_length_percentage(Length::ResolutionContext::for_layout_node(layout_node), percentage_basis); } Optional<Length> CalculatedStyleValue::resolve_length_percentage(Layout::Node const& layout_node, CSSPixels percentage_basis) const { return resolve_length_percentage(Length::ResolutionContext::for_layout_node(layout_node), Length::make_px(percentage_basis)); } Optional<Length> CalculatedStyleValue::resolve_length_percentage(Length::ResolutionContext const& resolution_context, Length const& percentage_basis) const { auto result = m_calculation->resolve(resolution_context, percentage_basis); return result.value().visit( [&](Length const& length) -> Optional<Length> { return length; }, [&](Percentage const& percentage) -> Optional<Length> { return percentage_basis.percentage_of(percentage); }, [&](auto const&) -> Optional<Length> { return {}; }); } Optional<Percentage> CalculatedStyleValue::resolve_percentage() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Percentage>()) return result.value().get<Percentage>(); return {}; } Optional<Resolution> CalculatedStyleValue::resolve_resolution() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Resolution>()) return result.value().get<Resolution>(); return {}; } Optional<Time> CalculatedStyleValue::resolve_time() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Time>()) return result.value().get<Time>(); return {}; } Optional<Time> CalculatedStyleValue::resolve_time_percentage(Time const& percentage_basis) const { auto result = m_calculation->resolve({}, percentage_basis); return result.value().visit( [&](Time const& time) -> Optional<Time> { return time; }, [&](auto const&) -> Optional<Time> { return {}; }); } Optional<double> CalculatedStyleValue::resolve_number() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Number>()) return result.value().get<Number>().value(); return {}; } Optional<i64> CalculatedStyleValue::resolve_integer() const { auto result = m_calculation->resolve({}, {}); if (result.value().has<Number>()) return result.value().get<Number>().integer_value(); return {}; } bool CalculatedStyleValue::contains_percentage() const { return m_calculation->contains_percentage(); } }