/* * Copyright (c) 2024, Nico Weber * * SPDX-License-Identifier: BSD-2-Clause */ #include #include namespace Gfx { // Table E.1 – Qe values and probability estimation process // See also E.1.2 Coding conventions and approximations // and E.2.5 Probability estimation. struct QeEntry { u16 qe; // Sub-interval for the less probable symbol. u16 nmps; // Next index if the more probable symbol is decoded u16 nlps; // Next index if the less probable symbol is decoded u16 switch_flag; // See second-to-last paragraph in E.1.2. }; constexpr auto qe_table = to_array({ { 0x5601, 1, 1, 1 }, { 0x3401, 2, 6, 0 }, { 0x1801, 3, 9, 0 }, { 0x0AC1, 4, 12, 0 }, { 0x0521, 5, 29, 0 }, { 0x0221, 38, 33, 0 }, { 0x5601, 7, 6, 1 }, { 0x5401, 8, 14, 0 }, { 0x4801, 9, 14, 0 }, { 0x3801, 10, 14, 0 }, { 0x3001, 11, 17, 0 }, { 0x2401, 12, 18, 0 }, { 0x1C01, 13, 20, 0 }, { 0x1601, 29, 21, 0 }, { 0x5601, 15, 14, 1 }, { 0x5401, 16, 14, 0 }, { 0x5101, 17, 15, 0 }, { 0x4801, 18, 16, 0 }, { 0x3801, 19, 17, 0 }, { 0x3401, 20, 18, 0 }, { 0x3001, 21, 19, 0 }, { 0x2801, 22, 19, 0 }, { 0x2401, 23, 20, 0 }, { 0x2201, 24, 21, 0 }, { 0x1C01, 25, 22, 0 }, { 0x1801, 26, 23, 0 }, { 0x1601, 27, 24, 0 }, { 0x1401, 28, 25, 0 }, { 0x1201, 29, 26, 0 }, { 0x1101, 30, 27, 0 }, { 0x0AC1, 31, 28, 0 }, { 0x09C1, 32, 29, 0 }, { 0x08A1, 33, 30, 0 }, { 0x0521, 34, 31, 0 }, { 0x0441, 35, 32, 0 }, { 0x02A1, 36, 33, 0 }, { 0x0221, 37, 34, 0 }, { 0x0141, 38, 35, 0 }, { 0x0111, 39, 36, 0 }, { 0x0085, 40, 37, 0 }, { 0x0049, 41, 38, 0 }, { 0x0025, 42, 39, 0 }, { 0x0015, 43, 40, 0 }, { 0x0009, 44, 41, 0 }, { 0x0005, 45, 42, 0 }, { 0x0001, 45, 43, 0 }, { 0x5601, 46, 46, 0 }, }); ErrorOr QMArithmeticDecoder::initialize(ReadonlyBytes data) { QMArithmeticDecoder decoder { data }; decoder.INITDEC(); return decoder; } bool QMArithmeticDecoder::get_next_bit(Context& context) { CX = &context; // Useful for comparing to Table H.1 – Encoder and decoder trace data. // dbg("I={} MPS={} A={:#x} C={:#x} CT={} B={:#x}", I(CX), MPS(CX), A, C, CT, B()); u8 D = DECODE(); // dbgln(" -> D={}", D); return D; } u16 QMArithmeticDecoder::Qe(u16 index) { return qe_table[index].qe; } u8 QMArithmeticDecoder::NMPS(u16 index) { return qe_table[index].nmps; } u8 QMArithmeticDecoder::NLPS(u16 index) { return qe_table[index].nlps; } u8 QMArithmeticDecoder::SWITCH(u16 index) { return qe_table[index].switch_flag; } u8 QMArithmeticDecoder::B(size_t offset) const { // E.2.10 Minimization of the compressed data // "the convention is used in the decoder that when a marker code is encountered, // 1-bits (without bit stuffing) are supplied to the decoder until the coding interval is complete." if (BP + offset >= m_data.size()) return 0xFF; return m_data[BP + offset]; } void QMArithmeticDecoder::INITDEC() { // E.3.5 Initialization of the decoder (INITDEC) // Figure G.1 – Initialization of the software conventions decoder // "BP, the pointer to the compressed data, is initialized to BPST (pointing to the first compressed byte)." auto const BPST = 0; BP = BPST; C = (B() ^ 0xFF) << 16; BYTEIN(); C = C << 7; CT = CT - 7; A = 0x8000; } u8 QMArithmeticDecoder::DECODE() { // E.3.2 Decoding a decision (DECODE) // Figure G.2 – Decoding an MPS or an LPS in the software-conventions decoder u8 D; A = A - Qe(I(CX)); if (C < ((u32)A << 16)) { // `(C_high < A)` in spec if ((A & 0x8000) == 0) { D = MPS_EXCHANGE(); RENORMD(); } else { D = MPS(CX); } } else { C = C - ((u32)A << 16); // `C_high = C_high - A` in spec D = LPS_EXCHANGE(); RENORMD(); } return D; } u8 QMArithmeticDecoder::MPS_EXCHANGE() { // Figure E.16 – Decoder MPS path conditional exchange procedure u8 D; if (A < Qe(I(CX))) { D = 1 - MPS(CX); if (SWITCH(I(CX)) == 1) { MPS(CX) = 1 - MPS(CX); } I(CX) = NLPS(I(CX)); } else { D = MPS(CX); I(CX) = NMPS(I(CX)); } return D; } u8 QMArithmeticDecoder::LPS_EXCHANGE() { // Figure E.17 – Decoder LPS path conditional exchange procedure u8 D; if (A < Qe(I(CX))) { A = Qe(I(CX)); D = MPS(CX); I(CX) = NMPS(I(CX)); } else { A = Qe(I(CX)); D = 1 - MPS(CX); if (SWITCH(I(CX)) == 1) { MPS(CX) = 1 - MPS(CX); } I(CX) = NLPS(I(CX)); } return D; } void QMArithmeticDecoder::RENORMD() { // E.3.3 Renormalization in the decoder (RENORMD) // Figure E.18 – Decoder renormalization procedure do { if (CT == 0) BYTEIN(); A = A << 1; C = C << 1; CT = CT - 1; } while ((A & 0x8000) == 0); } void QMArithmeticDecoder::BYTEIN() { // E.3.4 Compressed data input (BYTEIN) // Figure G.3 – Inserting a new byte into the C register in the software-conventions decoder if (B() == 0xFF) { if (B(1) > 0x8F) { CT = 8; } else { BP = BP + 1; C = C + 0xFE00 - (B() << 9); CT = 7; } } else { BP = BP + 1; C = C + 0xFF00 - (B() << 8); CT = 8; } } }