/* * Copyright (c) 2021-2022, Idan Horowitz * Copyright (c) 2021-2023, Linus Groh * Copyright (c) 2021, Luke Wilde * Copyright (c) 2024, Tim Flynn * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace JS::Temporal { // https://tc39.es/proposal-temporal/#table-temporal-units struct TemporalUnit { Unit value; StringView singular_property_name; StringView plural_property_name; UnitCategory category; RoundingIncrement maximum_duration_rounding_increment; }; static auto temporal_units = to_array({ { Unit::Year, "year"sv, "years"sv, UnitCategory::Date, Unset {} }, { Unit::Month, "month"sv, "months"sv, UnitCategory::Date, Unset {} }, { Unit::Week, "week"sv, "weeks"sv, UnitCategory::Date, Unset {} }, { Unit::Day, "day"sv, "days"sv, UnitCategory::Date, Unset {} }, { Unit::Hour, "hour"sv, "hours"sv, UnitCategory::Time, 24 }, { Unit::Minute, "minute"sv, "minutes"sv, UnitCategory::Time, 60 }, { Unit::Second, "second"sv, "seconds"sv, UnitCategory::Time, 60 }, { Unit::Millisecond, "millisecond"sv, "milliseconds"sv, UnitCategory::Time, 1000 }, { Unit::Microsecond, "microsecond"sv, "microseconds"sv, UnitCategory::Time, 1000 }, { Unit::Nanosecond, "nanosecond"sv, "nanoseconds"sv, UnitCategory::Time, 1000 }, }); StringView temporal_unit_to_string(Unit unit) { return temporal_units[to_underlying(unit)].singular_property_name; } // 13.14 ValidateTemporalRoundingIncrement ( increment, dividend, inclusive ), https://tc39.es/proposal-temporal/#sec-validatetemporalroundingincrement ThrowCompletionOr validate_temporal_rounding_increment(VM& vm, u64 increment, u64 dividend, bool inclusive) { u64 maximum = 0; // 1. If inclusive is true, then if (inclusive) { // a. Let maximum be dividend. maximum = dividend; } // 2. Else, else { // a. Assert: dividend > 1. VERIFY(dividend > 1); // b. Let maximum be dividend - 1. maximum = dividend - 1; } // 3. If increment > maximum, throw a RangeError exception. if (increment > maximum) return vm.throw_completion(ErrorType::OptionIsNotValidValue, increment, "roundingIncrement"); // 5. If dividend modulo increment ≠ 0, then if (modulo(dividend, increment) != 0) { // a. Throw a RangeError exception. return vm.throw_completion(ErrorType::OptionIsNotValidValue, increment, "roundingIncrement"); } // 6. Return UNUSED. return {}; } // 13.15 GetTemporalFractionalSecondDigitsOption ( options ), https://tc39.es/proposal-temporal/#sec-temporal-gettemporalfractionalseconddigitsoption ThrowCompletionOr get_temporal_fractional_second_digits_option(VM& vm, Object const& options) { // 1. Let digitsValue be ? Get(options, "fractionalSecondDigits"). auto digits_value = TRY(options.get(vm.names.fractionalSecondDigits)); // 2. If digitsValue is undefined, return AUTO. if (digits_value.is_undefined()) return Precision { Auto {} }; // 3. If digitsValue is not a Number, then if (!digits_value.is_number()) { // a. If ? ToString(digitsValue) is not "auto", throw a RangeError exception. auto digits_value_string = TRY(digits_value.to_string(vm)); if (digits_value_string != "auto"sv) return vm.throw_completion(ErrorType::OptionIsNotValidValue, digits_value, vm.names.fractionalSecondDigits); // b. Return AUTO. return Precision { Auto {} }; } // 4. If digitsValue is NaN, +∞𝔽, or -∞𝔽, throw a RangeError exception. if (digits_value.is_nan() || digits_value.is_infinity()) return vm.throw_completion(ErrorType::OptionIsNotValidValue, digits_value, vm.names.fractionalSecondDigits); // 5. Let digitCount be floor(ℝ(digitsValue)). auto digit_count = floor(digits_value.as_double()); // 6. If digitCount < 0 or digitCount > 9, throw a RangeError exception. if (digit_count < 0 || digit_count > 9) return vm.throw_completion(ErrorType::OptionIsNotValidValue, digits_value, vm.names.fractionalSecondDigits); // 7. Return digitCount. return Precision { static_cast(digit_count) }; } // 13.16 ToSecondsStringPrecisionRecord ( smallestUnit, fractionalDigitCount ), https://tc39.es/proposal-temporal/#sec-temporal-tosecondsstringprecisionrecord SecondsStringPrecision to_seconds_string_precision_record(UnitValue smallest_unit, Precision fractional_digit_count) { if (auto const* unit = smallest_unit.get_pointer()) { // 1. If smallestUnit is MINUTE, then if (*unit == Unit::Minute) { // a. Return the Record { [[Precision]]: MINUTE, [[Unit]]: MINUTE, [[Increment]]: 1 }. return { .precision = SecondsStringPrecision::Minute {}, .unit = Unit::Minute, .increment = 1 }; } // 2. If smallestUnit is SECOND, then if (*unit == Unit::Second) { // a. Return the Record { [[Precision]]: 0, [[Unit]]: SECOND, [[Increment]]: 1 }. return { .precision = 0, .unit = Unit::Second, .increment = 1 }; } // 3. If smallestUnit is MILLISECOND, then if (*unit == Unit::Millisecond) { // a. Return the Record { [[Precision]]: 3, [[Unit]]: MILLISECOND, [[Increment]]: 1 }. return { .precision = 3, .unit = Unit::Millisecond, .increment = 1 }; } // 4. If smallestUnit is MICROSECOND, then if (*unit == Unit::Microsecond) { // a. Return the Record { [[Precision]]: 6, [[Unit]]: MICROSECOND, [[Increment]]: 1 }. return { .precision = 6, .unit = Unit::Microsecond, .increment = 1 }; } // 5. If smallestUnit is NANOSECOND, then if (*unit == Unit::Nanosecond) { // a. Return the Record { [[Precision]]: 9, [[Unit]]: NANOSECOND, [[Increment]]: 1 }. return { .precision = 9, .unit = Unit::Nanosecond, .increment = 1 }; } } // 6. Assert: smallestUnit is UNSET. VERIFY(smallest_unit.has()); // 7. If fractionalDigitCount is auto, then if (fractional_digit_count.has()) { // a. Return the Record { [[Precision]]: AUTO, [[Unit]]: NANOSECOND, [[Increment]]: 1 }. return { .precision = Auto {}, .unit = Unit::Nanosecond, .increment = 1 }; } auto fractional_digits = fractional_digit_count.get(); // 8. If fractionalDigitCount = 0, then if (fractional_digits == 0) { // a. Return the Record { [[Precision]]: 0, [[Unit]]: SECOND, [[Increment]]: 1 }. return { .precision = 0, .unit = Unit::Second, .increment = 1 }; } // 9. If fractionalDigitCount is in the inclusive interval from 1 to 3, then if (fractional_digits >= 1 && fractional_digits <= 3) { // a. Return the Record { [[Precision]]: fractionalDigitCount, [[Unit]]: MILLISECOND, [[Increment]]: 10**(3 - fractionalDigitCount) }. return { .precision = fractional_digits, .unit = Unit::Millisecond, .increment = static_cast(pow(10, 3 - fractional_digits)) }; } // 10. If fractionalDigitCount is in the inclusive interval from 4 to 6, then if (fractional_digits >= 4 && fractional_digits <= 6) { // a. Return the Record { [[Precision]]: fractionalDigitCount, [[Unit]]: MICROSECOND, [[Increment]]: 10**(6 - fractionalDigitCount) }. return { .precision = fractional_digits, .unit = Unit::Microsecond, .increment = static_cast(pow(10, 6 - fractional_digits)) }; } // 11. Assert: fractionalDigitCount is in the inclusive interval from 7 to 9. VERIFY(fractional_digits >= 7 && fractional_digits <= 9); // 12. Return the Record { [[Precision]]: fractionalDigitCount, [[Unit]]: NANOSECOND, [[Increment]]: 10**(9 - fractionalDigitCount) }. return { .precision = fractional_digits, .unit = Unit::Nanosecond, .increment = static_cast(pow(10, 9 - fractional_digits)) }; } // 13.17 GetTemporalUnitValuedOption ( options, key, unitGroup, default [ , extraValues ] ), https://tc39.es/proposal-temporal/#sec-temporal-gettemporalunitvaluedoption ThrowCompletionOr get_temporal_unit_valued_option(VM& vm, Object const& options, PropertyKey const& key, UnitGroup unit_group, UnitDefault const& default_, ReadonlySpan extra_values) { // 1. Let allowedValues be a new empty List. Vector allowed_values; // 2. For each row of Table 21, except the header row, in table order, do for (auto const& row : temporal_units) { // a. Let unit be the value in the "Value" column of the row. auto unit = row.value; // b. If the "Category" column of the row is DATE and unitGroup is DATE or DATETIME, append unit to allowedValues. if (row.category == UnitCategory::Date && (unit_group == UnitGroup::Date || unit_group == UnitGroup::DateTime)) allowed_values.append(unit); // c. Else if the "Category" column of the row is TIME and unitGroup is TIME or DATETIME, append unit to allowedValues. if (row.category == UnitCategory::Time && (unit_group == UnitGroup::Time || unit_group == UnitGroup::DateTime)) allowed_values.append(unit); } // 3. If extraValues is present, then if (!extra_values.is_empty()) { // a. Set allowedValues to the list-concatenation of allowedValues and extraValues. for (auto value : extra_values) allowed_values.append(value); } OptionDefault default_value; // 4. If default is UNSET, then if (default_.has()) { // a. Let defaultValue be undefined. default_value = {}; } // 5. Else if default is REQUIRED, then else if (default_.has()) { // a. Let defaultValue be REQUIRED. default_value = Required {}; } // 6. Else if default is AUTO, then else if (default_.has()) { // a. Append default to allowedValues. allowed_values.append(Auto {}); // b. Let defaultValue be "auto". default_value = "auto"sv; } // 7. Else, else { auto unit = default_.get(); // a. Assert: allowedValues contains default. // b. Let defaultValue be the value in the "Singular property name" column of Table 21 corresponding to the row // with default in the "Value" column. default_value = temporal_units[to_underlying(unit)].singular_property_name; } // 8. Let allowedStrings be a new empty List. Vector allowed_strings; // 9. For each element value of allowedValues, do for (auto value : allowed_values) { // a. If value is auto, then if (value.has()) { // i. Append "auto" to allowedStrings. allowed_strings.append("auto"sv); } // b. Else, else { auto unit = value.get(); // i. Let singularName be the value in the "Singular property name" column of Table 21 corresponding to the // row with value in the "Value" column. auto singular_name = temporal_units[to_underlying(unit)].singular_property_name; // ii. Append singularName to allowedStrings. allowed_strings.append(singular_name); // iii. Let pluralName be the value in the "Plural property name" column of the corresponding row. auto plural_name = temporal_units[to_underlying(unit)].plural_property_name; // iv. Append pluralName to allowedStrings. allowed_strings.append(plural_name); } } // 10. NOTE: For each singular Temporal unit name that is contained within allowedStrings, the corresponding plural // name is also contained within it. // 11. Let value be ? GetOption(options, key, STRING, allowedStrings, defaultValue). auto value = TRY(get_option(vm, options, key, OptionType::String, allowed_strings, default_value)); // 12. If value is undefined, return UNSET. if (value.is_undefined()) return UnitValue { Unset {} }; auto value_string = value.as_string().utf8_string_view(); // 13. If value is "auto", return AUTO. if (value_string == "auto"sv) return UnitValue { Auto {} }; // 14. Return the value in the "Value" column of Table 21 corresponding to the row with value in its "Singular // property name" or "Plural property name" column. for (auto const& row : temporal_units) { if (value_string.is_one_of(row.singular_property_name, row.plural_property_name)) return UnitValue { row.value }; } VERIFY_NOT_REACHED(); } // 13.18 GetTemporalRelativeToOption ( options ), https://tc39.es/proposal-temporal/#sec-temporal-gettemporalrelativetooption ThrowCompletionOr get_temporal_relative_to_option(VM& vm, Object const& options) { // 1. Let value be ? Get(options, "relativeTo"). auto value = TRY(options.get(vm.names.relativeTo)); // 2. If value is undefined, return the Record { [[PlainRelativeTo]]: undefined, [[ZonedRelativeTo]]: undefined }. if (value.is_undefined()) return RelativeTo { .plain_relative_to = {}, .zoned_relative_to = {} }; // FIXME: Implement the remaining steps of this AO when we have implemented PlainRelativeTo and ZonedRelativeTo. return RelativeTo { .plain_relative_to = {}, .zoned_relative_to = {} }; } // 13.19 LargerOfTwoTemporalUnits ( u1, u2 ), https://tc39.es/proposal-temporal/#sec-temporal-largeroftwotemporalunits Unit larger_of_two_temporal_units(Unit unit1, Unit unit2) { // 1. For each row of Table 21, except the header row, in table order, do for (auto const& row : temporal_units) { // a. Let unit be the value in the "Value" column of the row. auto unit = row.value; // b. If u1 is unit, return unit. if (unit1 == unit) return unit; // c. If u2 is unit, return unit. if (unit2 == unit) return unit; } VERIFY_NOT_REACHED(); } // 13.20 IsCalendarUnit ( unit ), https://tc39.es/proposal-temporal/#sec-temporal-iscalendarunit bool is_calendar_unit(Unit unit) { // 1. If unit is year, return true. if (unit == Unit::Year) return true; // 2. If unit is month, return true. if (unit == Unit::Month) return true; // 3. If unit is week, return true. if (unit == Unit::Week) return true; // 4. Return false. return false; } // 13.21 TemporalUnitCategory ( unit ), https://tc39.es/proposal-temporal/#sec-temporal-temporalunitcategory UnitCategory temporal_unit_category(Unit unit) { // 1. Return the value from the "Category" column of the row of Table 21 in which unit is in the "Value" column. return temporal_units[to_underlying(unit)].category; } // 13.22 MaximumTemporalDurationRoundingIncrement ( unit ), https://tc39.es/proposal-temporal/#sec-temporal-maximumtemporaldurationroundingincrement RoundingIncrement maximum_temporal_duration_rounding_increment(Unit unit) { // 1. Return the value from the "Maximum duration rounding increment" column of the row of Table 21 in which unit is // in the "Value" column. return temporal_units[to_underlying(unit)].maximum_duration_rounding_increment; } // AD-HOC Crypto::UnsignedBigInteger const& temporal_unit_length_in_nanoseconds(Unit unit) { switch (unit) { case Unit::Day: return NANOSECONDS_PER_DAY; case Unit::Hour: return NANOSECONDS_PER_HOUR; case Unit::Minute: return NANOSECONDS_PER_MINUTE; case Unit::Second: return NANOSECONDS_PER_SECOND; case Unit::Millisecond: return NANOSECONDS_PER_MILLISECOND; case Unit::Microsecond: return NANOSECONDS_PER_MICROSECOND; case Unit::Nanosecond: return NANOSECONDS_PER_NANOSECOND; default: VERIFY_NOT_REACHED(); } } // 13.24 FormatFractionalSeconds ( subSecondNanoseconds, precision ), https://tc39.es/proposal-temporal/#sec-temporal-formatfractionalseconds String format_fractional_seconds(u64 sub_second_nanoseconds, Precision precision) { String fraction_string; // 1. If precision is auto, then if (precision.has()) { // a. If subSecondNanoseconds = 0, return the empty String. if (sub_second_nanoseconds == 0) return String {}; // b. Let fractionString be ToZeroPaddedDecimalString(subSecondNanoseconds, 9). fraction_string = MUST(String::formatted("{:09}", sub_second_nanoseconds)); // c. Set fractionString to the longest prefix of fractionString ending with a code unit other than 0x0030 (DIGIT ZERO). fraction_string = MUST(fraction_string.trim("0"sv, TrimMode::Right)); } // 2. Else, else { // a. If precision = 0, return the empty String. if (precision.get() == 0) return String {}; // b. Let fractionString be ToZeroPaddedDecimalString(subSecondNanoseconds, 9). fraction_string = MUST(String::formatted("{:09}", sub_second_nanoseconds)); // c. Set fractionString to the substring of fractionString from 0 to precision. fraction_string = MUST(fraction_string.substring_from_byte_offset(0, precision.get())); } // 3. Return the string-concatenation of the code unit 0x002E (FULL STOP) and fractionString. return MUST(String::formatted(".{}", fraction_string)); } // 13.26 GetUnsignedRoundingMode ( roundingMode, sign ), https://tc39.es/proposal-temporal/#sec-getunsignedroundingmode UnsignedRoundingMode get_unsigned_rounding_mode(RoundingMode rounding_mode, Sign sign) { // 1. Return the specification type in the "Unsigned Rounding Mode" column of Table 22 for the row where the value // in the "Rounding Mode" column is roundingMode and the value in the "Sign" column is sign. switch (rounding_mode) { case RoundingMode::Ceil: return sign == Sign::Positive ? UnsignedRoundingMode::Infinity : UnsignedRoundingMode::Zero; case RoundingMode::Floor: return sign == Sign::Positive ? UnsignedRoundingMode::Zero : UnsignedRoundingMode::Infinity; case RoundingMode::Expand: return UnsignedRoundingMode::Infinity; case RoundingMode::Trunc: return UnsignedRoundingMode::Zero; case RoundingMode::HalfCeil: return sign == Sign::Positive ? UnsignedRoundingMode::HalfInfinity : UnsignedRoundingMode::HalfZero; case RoundingMode::HalfFloor: return sign == Sign::Positive ? UnsignedRoundingMode::HalfZero : UnsignedRoundingMode::HalfInfinity; case RoundingMode::HalfExpand: return UnsignedRoundingMode::HalfInfinity; case RoundingMode::HalfTrunc: return UnsignedRoundingMode::HalfZero; case RoundingMode::HalfEven: return UnsignedRoundingMode::HalfEven; } VERIFY_NOT_REACHED(); } // 13.27 ApplyUnsignedRoundingMode ( x, r1, r2, unsignedRoundingMode ), https://tc39.es/proposal-temporal/#sec-applyunsignedroundingmode double apply_unsigned_rounding_mode(double x, double r1, double r2, UnsignedRoundingMode unsigned_rounding_mode) { // 1. If x = r1, return r1. if (x == r1) return r1; // 2. Assert: r1 < x < r2. VERIFY(r1 < x && x < r2); // 3. Assert: unsignedRoundingMode is not undefined. // 4. If unsignedRoundingMode is ZERO, return r1. if (unsigned_rounding_mode == UnsignedRoundingMode::Zero) return r1; // 5. If unsignedRoundingMode is INFINITY, return r2. if (unsigned_rounding_mode == UnsignedRoundingMode::Infinity) return r2; // 6. Let d1 be x – r1. auto d1 = x - r1; // 7. Let d2 be r2 – x. auto d2 = r2 - x; // 8. If d1 < d2, return r1. if (d1 < d2) return r1; // 9. If d2 < d1, return r2. if (d2 < d1) return r2; // 10. Assert: d1 is equal to d2. VERIFY(d1 == d2); // 11. If unsignedRoundingMode is HALF-ZERO, return r1. if (unsigned_rounding_mode == UnsignedRoundingMode::HalfZero) return r1; // 12. If unsignedRoundingMode is HALF-INFINITY, return r2. if (unsigned_rounding_mode == UnsignedRoundingMode::HalfInfinity) return r2; // 13. Assert: unsignedRoundingMode is HALF-EVEN. VERIFY(unsigned_rounding_mode == UnsignedRoundingMode::HalfEven); // 14. Let cardinality be (r1 / (r2 – r1)) modulo 2. auto cardinality = modulo((r1 / (r2 - r1)), 2); // 15. If cardinality = 0, return r1. if (cardinality == 0) return r1; // 16. Return r2. return r2; } // 13.27 ApplyUnsignedRoundingMode ( x, r1, r2, unsignedRoundingMode ), https://tc39.es/proposal-temporal/#sec-applyunsignedroundingmode Crypto::SignedBigInteger apply_unsigned_rounding_mode(Crypto::SignedDivisionResult const& x, Crypto::SignedBigInteger const& r1, Crypto::SignedBigInteger const& r2, UnsignedRoundingMode unsigned_rounding_mode, Crypto::UnsignedBigInteger const& increment) { // 1. If x = r1, return r1. if (x.quotient == r1 && x.remainder.unsigned_value().is_zero()) return r1; // 2. Assert: r1 < x < r2. // NOTE: Skipped for the sake of performance. // 3. Assert: unsignedRoundingMode is not undefined. // 4. If unsignedRoundingMode is ZERO, return r1. if (unsigned_rounding_mode == UnsignedRoundingMode::Zero) return r1; // 5. If unsignedRoundingMode is INFINITY, return r2. if (unsigned_rounding_mode == UnsignedRoundingMode::Infinity) return r2; // 6. Let d1 be x – r1. auto d1 = x.remainder.unsigned_value(); // 7. Let d2 be r2 – x. auto d2 = increment.minus(x.remainder.unsigned_value()); // 8. If d1 < d2, return r1. if (d1 < d2) return r1; // 9. If d2 < d1, return r2. if (d2 < d1) return r2; // 10. Assert: d1 is equal to d2. // NOTE: Skipped for the sake of performance. // 11. If unsignedRoundingMode is HALF-ZERO, return r1. if (unsigned_rounding_mode == UnsignedRoundingMode::HalfZero) return r1; // 12. If unsignedRoundingMode is HALF-INFINITY, return r2. if (unsigned_rounding_mode == UnsignedRoundingMode::HalfInfinity) return r2; // 13. Assert: unsignedRoundingMode is HALF-EVEN. VERIFY(unsigned_rounding_mode == UnsignedRoundingMode::HalfEven); // 14. Let cardinality be (r1 / (r2 – r1)) modulo 2. auto cardinality = modulo(r1.divided_by(r2.minus(r1)).quotient, "2"_bigint); // 15. If cardinality = 0, return r1. if (cardinality.unsigned_value().is_zero()) return r1; // 16. Return r2. return r2; } // 13.28 RoundNumberToIncrement ( x, increment, roundingMode ), https://tc39.es/proposal-temporal/#sec-temporal-roundnumbertoincrement double round_number_to_increment(double x, u64 increment, RoundingMode rounding_mode) { // 1. Let quotient be x / increment. auto quotient = x / static_cast(increment); Sign is_negative; // 2. If quotient < 0, then if (quotient < 0) { // a. Let isNegative be NEGATIVE. is_negative = Sign::Negative; // b. Set quotient to -quotient. quotient = -quotient; } // 3. Else, else { // a. Let isNegative be POSITIVE. is_negative = Sign::Positive; } // 4. Let unsignedRoundingMode be GetUnsignedRoundingMode(roundingMode, isNegative). auto unsigned_rounding_mode = get_unsigned_rounding_mode(rounding_mode, is_negative); // 5. Let r1 be the largest integer such that r1 ≤ quotient. auto r1 = floor(quotient); // 6. Let r2 be the smallest integer such that r2 > quotient. auto r2 = ceil(quotient); if (quotient == r2) r2++; // 7. Let rounded be ApplyUnsignedRoundingMode(quotient, r1, r2, unsignedRoundingMode). auto rounded = apply_unsigned_rounding_mode(quotient, r1, r2, unsigned_rounding_mode); // 8. If isNegative is NEGATIVE, set rounded to -rounded. if (is_negative == Sign::Negative) rounded = -rounded; // 9. Return rounded × increment. return rounded * static_cast(increment); } // 13.28 RoundNumberToIncrement ( x, increment, roundingMode ), https://tc39.es/proposal-temporal/#sec-temporal-roundnumbertoincrement Crypto::SignedBigInteger round_number_to_increment(Crypto::SignedBigInteger const& x, Crypto::UnsignedBigInteger const& increment, RoundingMode rounding_mode) { // OPTIMIZATION: If the increment is 1 the number is always rounded. if (increment == 1) return x; // 1. Let quotient be x / increment. auto division_result = x.divided_by(increment); // OPTIMIZATION: If there's no remainder the number is already rounded. if (division_result.remainder.unsigned_value().is_zero()) return x; Sign is_negative; // 2. If quotient < 0, then if (division_result.quotient.is_negative()) { // a. Let isNegative be NEGATIVE. is_negative = Sign::Negative; // b. Set quotient to -quotient. division_result.quotient.negate(); division_result.remainder.negate(); } // 3. Else, else { // a. Let isNegative be POSITIVE. is_negative = Sign::Positive; } // 4. Let unsignedRoundingMode be GetUnsignedRoundingMode(roundingMode, isNegative). auto unsigned_rounding_mode = get_unsigned_rounding_mode(rounding_mode, is_negative); // 5. Let r1 be the largest integer such that r1 ≤ quotient. auto r1 = division_result.quotient; // 6. Let r2 be the smallest integer such that r2 > quotient. auto r2 = division_result.quotient.plus(1_bigint); // 7. Let rounded be ApplyUnsignedRoundingMode(quotient, r1, r2, unsignedRoundingMode). auto rounded = apply_unsigned_rounding_mode(division_result, r1, r2, unsigned_rounding_mode, increment); // 8. If isNegative is NEGATIVE, set rounded to -rounded. if (is_negative == Sign::Negative) rounded.negate(); // 9. Return rounded × increment. return rounded.multiplied_by(increment); } // 13.35 ParseTemporalDurationString ( isoString ), https://tc39.es/proposal-temporal/#sec-temporal-parsetemporaldurationstring ThrowCompletionOr> parse_temporal_duration_string(VM& vm, StringView iso_string) { // 1. Let duration be ParseText(StringToCodePoints(isoString), TemporalDurationString). auto parse_result = parse_iso8601(Production::TemporalDurationString, iso_string); // 2. If duration is a List of errors, throw a RangeError exception. if (!parse_result.has_value()) return vm.throw_completion(ErrorType::TemporalInvalidDurationString, iso_string); // 3. Let sign be the source text matched by the ASCIISign Parse Node contained within duration, or an empty sequence // of code points if not present. auto sign = parse_result->sign; // 4. If duration contains a DurationYearsPart Parse Node, then // a. Let yearsNode be that DurationYearsPart Parse Node contained within duration. // b. Let years be the source text matched by the DecimalDigits Parse Node contained within yearsNode. // 5. Else, // a. Let years be an empty sequence of code points. auto years = parse_result->duration_years.value_or({}); // 6. If duration contains a DurationMonthsPart Parse Node, then // a. Let monthsNode be the DurationMonthsPart Parse Node contained within duration. // b. Let months be the source text matched by the DecimalDigits Parse Node contained within monthsNode. // 7. Else, // a. Let months be an empty sequence of code points. auto months = parse_result->duration_months.value_or({}); // 8. If duration contains a DurationWeeksPart Parse Node, then // a. Let weeksNode be the DurationWeeksPart Parse Node contained within duration. // b. Let weeks be the source text matched by the DecimalDigits Parse Node contained within weeksNode. // 9. Else, // a. Let weeks be an empty sequence of code points. auto weeks = parse_result->duration_weeks.value_or({}); // 10. If duration contains a DurationDaysPart Parse Node, then // a. Let daysNode be the DurationDaysPart Parse Node contained within duration. // b. Let days be the source text matched by the DecimalDigits Parse Node contained within daysNode. // 11. Else, // a. Let days be an empty sequence of code points. auto days = parse_result->duration_days.value_or({}); // 12. If duration contains a DurationHoursPart Parse Node, then // a. Let hoursNode be the DurationHoursPart Parse Node contained within duration. // b. Let hours be the source text matched by the DecimalDigits Parse Node contained within hoursNode. // c. Let fHours be the source text matched by the TemporalDecimalFraction Parse Node contained within // hoursNode, or an empty sequence of code points if not present. // 13. Else, // a. Let hours be an empty sequence of code points. // b. Let fHours be an empty sequence of code points. auto hours = parse_result->duration_hours.value_or({}); auto fractional_hours = parse_result->duration_hours_fraction.value_or({}); // 14. If duration contains a DurationMinutesPart Parse Node, then // a. Let minutesNode be the DurationMinutesPart Parse Node contained within duration. // b. Let minutes be the source text matched by the DecimalDigits Parse Node contained within minutesNode. // c. Let fMinutes be the source text matched by the TemporalDecimalFraction Parse Node contained within // minutesNode, or an empty sequence of code points if not present. // 15. Else, // a. Let minutes be an empty sequence of code points. // b. Let fMinutes be an empty sequence of code points. auto minutes = parse_result->duration_minutes.value_or({}); auto fractional_minutes = parse_result->duration_minutes_fraction.value_or({}); // 16. If duration contains a DurationSecondsPart Parse Node, then // a. Let secondsNode be the DurationSecondsPart Parse Node contained within duration. // b. Let seconds be the source text matched by the DecimalDigits Parse Node contained within secondsNode. // c. Let fSeconds be the source text matched by the TemporalDecimalFraction Parse Node contained within // secondsNode, or an empty sequence of code points if not present. // 17. Else, // a. Let seconds be an empty sequence of code points. // b. Let fSeconds be an empty sequence of code points. auto seconds = parse_result->duration_seconds.value_or({}); auto fractional_seconds = parse_result->duration_seconds_fraction.value_or({}); // 18. Let yearsMV be ? ToIntegerWithTruncation(CodePointsToString(years)). auto years_value = TRY(to_integer_with_truncation(vm, years, ErrorType::TemporalInvalidDurationString, iso_string)); // 19. Let monthsMV be ? ToIntegerWithTruncation(CodePointsToString(months)). auto months_value = TRY(to_integer_with_truncation(vm, months, ErrorType::TemporalInvalidDurationString, iso_string)); // 20. Let weeksMV be ? ToIntegerWithTruncation(CodePointsToString(weeks)). auto weeks_value = TRY(to_integer_with_truncation(vm, weeks, ErrorType::TemporalInvalidDurationString, iso_string)); // 21. Let daysMV be ? ToIntegerWithTruncation(CodePointsToString(days)). auto days_value = TRY(to_integer_with_truncation(vm, days, ErrorType::TemporalInvalidDurationString, iso_string)); // 22. Let hoursMV be ? ToIntegerWithTruncation(CodePointsToString(hours)). auto hours_value = TRY(to_integer_with_truncation(vm, hours, ErrorType::TemporalInvalidDurationString, iso_string)); Crypto::BigFraction minutes_value; Crypto::BigFraction seconds_value; Crypto::BigFraction milliseconds_value; auto remainder_one = [](Crypto::BigFraction const& value) { // FIXME: We should add a generic remainder() method to BigFraction, or a method equivalent to modf(). But for // now, since we know we are only dividing by powers of 10, we can implement a very situationally specific // method to extract the fractional part of the BigFraction. auto res = value.numerator().divided_by(value.denominator()); return Crypto::BigFraction { move(res.remainder), value.denominator() }; }; // 23. If fHours is not empty, then if (!fractional_hours.is_empty()) { // a. Assert: minutes, fMinutes, seconds, and fSeconds are empty. VERIFY(minutes.is_empty()); VERIFY(fractional_minutes.is_empty()); VERIFY(seconds.is_empty()); VERIFY(fractional_seconds.is_empty()); // b. Let fHoursDigits be the substring of CodePointsToString(fHours) from 1. auto fractional_hours_digits = fractional_hours.substring_view(1); // c. Let fHoursScale be the length of fHoursDigits. auto fractional_hours_scale = fractional_hours_digits.length(); // d. Let minutesMV be ? ToIntegerWithTruncation(fHoursDigits) / 10**fHoursScale × 60. auto minutes_integer = TRY(to_integer_with_truncation(vm, fractional_hours_digits, ErrorType::TemporalInvalidDurationString, iso_string)); minutes_value = Crypto::BigFraction { minutes_integer } / Crypto::BigFraction { pow(10.0, fractional_hours_scale) } * Crypto::BigFraction { 60.0 }; } // 24. Else, else { // a. Let minutesMV be ? ToIntegerWithTruncation(CodePointsToString(minutes)). auto minutes_integer = TRY(to_integer_with_truncation(vm, minutes, ErrorType::TemporalInvalidDurationString, iso_string)); minutes_value = Crypto::BigFraction { minutes_integer }; } // 25. If fMinutes is not empty, then if (!fractional_minutes.is_empty()) { // a. Assert: seconds and fSeconds are empty. VERIFY(seconds.is_empty()); VERIFY(fractional_seconds.is_empty()); // b. Let fMinutesDigits be the substring of CodePointsToString(fMinutes) from 1. auto fractional_minutes_digits = fractional_minutes.substring_view(1); // c. Let fMinutesScale be the length of fMinutesDigits. auto fractional_minutes_scale = fractional_minutes_digits.length(); // d. Let secondsMV be ? ToIntegerWithTruncation(fMinutesDigits) / 10**fMinutesScale × 60. auto seconds_integer = TRY(to_integer_with_truncation(vm, fractional_minutes_digits, ErrorType::TemporalInvalidDurationString, iso_string)); seconds_value = Crypto::BigFraction { seconds_integer } / Crypto::BigFraction { pow(10.0, fractional_minutes_scale) } * Crypto::BigFraction { 60.0 }; } // 26. Else if seconds is not empty, then else if (!seconds.is_empty()) { // a. Let secondsMV be ? ToIntegerWithTruncation(CodePointsToString(seconds)). auto seconds_integer = TRY(to_integer_with_truncation(vm, seconds, ErrorType::TemporalInvalidDurationString, iso_string)); seconds_value = Crypto::BigFraction { seconds_integer }; } // 27. Else, else { // a. Let secondsMV be remainder(minutesMV, 1) × 60. seconds_value = remainder_one(minutes_value) * Crypto::BigFraction { 60.0 }; } // 28. If fSeconds is not empty, then if (!fractional_seconds.is_empty()) { // a. Let fSecondsDigits be the substring of CodePointsToString(fSeconds) from 1. auto fractional_seconds_digits = fractional_seconds.substring_view(1); // b. Let fSecondsScale be the length of fSecondsDigits. auto fractional_seconds_scale = fractional_seconds_digits.length(); // c. Let millisecondsMV be ? ToIntegerWithTruncation(fSecondsDigits) / 10**fSecondsScale × 1000. auto milliseconds_integer = TRY(to_integer_with_truncation(vm, fractional_seconds_digits, ErrorType::TemporalInvalidDurationString, iso_string)); milliseconds_value = Crypto::BigFraction { milliseconds_integer } / Crypto::BigFraction { pow(10.0, fractional_seconds_scale) } * Crypto::BigFraction { 1000.0 }; } // 29. Else, else { // a. Let millisecondsMV be remainder(secondsMV, 1) × 1000. milliseconds_value = remainder_one(seconds_value) * Crypto::BigFraction { 1000.0 }; } // 30. Let microsecondsMV be remainder(millisecondsMV, 1) × 1000. auto microseconds_value = remainder_one(milliseconds_value) * Crypto::BigFraction { 1000.0 }; // 31. Let nanosecondsMV be remainder(microsecondsMV, 1) × 1000. auto nanoseconds_value = remainder_one(microseconds_value) * Crypto::BigFraction { 1000.0 }; // 32. If sign contains the code point U+002D (HYPHEN-MINUS), then // a. Let factor be -1. // 33. Else, // a. Let factor be 1. i8 factor = sign == '-' ? -1 : 1; // 34. Set yearsMV to yearsMV × factor. years_value *= factor; // 35. Set monthsMV to monthsMV × factor. months_value *= factor; // 36. Set weeksMV to weeksMV × factor. weeks_value *= factor; // 37. Set daysMV to daysMV × factor. days_value *= factor; // 38. Set hoursMV to hoursMV × factor. hours_value *= factor; // 39. Set minutesMV to floor(minutesMV) × factor. auto factored_minutes_value = floor(minutes_value.to_double()) * factor; // 40. Set secondsMV to floor(secondsMV) × factor. auto factored_seconds_value = floor(seconds_value.to_double()) * factor; // 41. Set millisecondsMV to floor(millisecondsMV) × factor. auto factored_milliseconds_value = floor(milliseconds_value.to_double()) * factor; // 42. Set microsecondsMV to floor(microsecondsMV) × factor. auto factored_microseconds_value = floor(microseconds_value.to_double()) * factor; // 43. Set nanosecondsMV to floor(nanosecondsMV) × factor. auto factored_nanoseconds_value = floor(nanoseconds_value.to_double()) * factor; // 44. Return ? CreateTemporalDuration(yearsMV, monthsMV, weeksMV, daysMV, hoursMV, minutesMV, secondsMV, millisecondsMV, microsecondsMV, nanosecondsMV). return TRY(create_temporal_duration(vm, years_value, months_value, weeks_value, days_value, hours_value, factored_minutes_value, factored_seconds_value, factored_milliseconds_value, factored_microseconds_value, factored_nanoseconds_value)); } // 14.4.1.1 GetOptionsObject ( options ), https://tc39.es/proposal-temporal/#sec-getoptionsobject ThrowCompletionOr> get_options_object(VM& vm, Value options) { auto& realm = *vm.current_realm(); // 1. If options is undefined, then if (options.is_undefined()) { // a. Return OrdinaryObjectCreate(null). return Object::create(realm, nullptr); } // 2. If options is an Object, then if (options.is_object()) { // a. Return options. return options.as_object(); } // 3. Throw a TypeError exception. return vm.throw_completion(ErrorType::NotAnObject, "Options"); } // 14.4.1.2 GetOption ( options, property, type, values, default ), https://tc39.es/proposal-temporal/#sec-getoption ThrowCompletionOr get_option(VM& vm, Object const& options, PropertyKey const& property, OptionType type, ReadonlySpan values, OptionDefault const& default_) { VERIFY(property.is_string()); // 1. Let value be ? Get(options, property). auto value = TRY(options.get(property)); // 2. If value is undefined, then if (value.is_undefined()) { // a. If default is REQUIRED, throw a RangeError exception. if (default_.has()) return vm.throw_completion(ErrorType::OptionIsNotValidValue, "undefined"sv, property.as_string()); // b. Return default. return default_.visit( [](Required) -> Value { VERIFY_NOT_REACHED(); }, [](Empty) -> Value { return js_undefined(); }, [](bool default_) -> Value { return Value { default_ }; }, [](double default_) -> Value { return Value { default_ }; }, [&](StringView default_) -> Value { return PrimitiveString::create(vm, default_); }); } // 3. If type is BOOLEAN, then if (type == OptionType::Boolean) { // a. Set value to ToBoolean(value). value = Value { value.to_boolean() }; } // 4. Else, else { // a. Assert: type is STRING. VERIFY(type == OptionType::String); // b. Set value to ? ToString(value). value = TRY(value.to_primitive_string(vm)); } // 5. If values is not EMPTY and values does not contain value, throw a RangeError exception. if (!values.is_empty()) { // NOTE: Every location in the spec that invokes GetOption with type=boolean also has values=undefined. VERIFY(value.is_string()); if (auto value_string = value.as_string().utf8_string(); !values.contains_slow(value_string)) return vm.throw_completion(ErrorType::OptionIsNotValidValue, value_string, property.as_string()); } // 6. Return value. return value; } // 14.4.1.3 GetRoundingModeOption ( options, fallback ), https://tc39.es/proposal-temporal/#sec-temporal-getroundingmodeoption ThrowCompletionOr get_rounding_mode_option(VM& vm, Object const& options, RoundingMode fallback) { // 1. Let allowedStrings be the List of Strings from the "String Identifier" column of Table 26. static constexpr auto allowed_strings = to_array({ "ceil"sv, "floor"sv, "expand"sv, "trunc"sv, "halfCeil"sv, "halfFloor"sv, "halfExpand"sv, "halfTrunc"sv, "halfEven"sv }); // 2. Let stringFallback be the value from the "String Identifier" column of the row with fallback in its "Rounding Mode" column. auto string_fallback = allowed_strings[to_underlying(fallback)]; // 3. Let stringValue be ? GetOption(options, "roundingMode", STRING, allowedStrings, stringFallback). auto string_value = TRY(get_option(vm, options, vm.names.roundingMode, OptionType::String, allowed_strings, string_fallback)); // 4. Return the value from the "Rounding Mode" column of the row with stringValue in its "String Identifier" column. return static_cast(allowed_strings.first_index_of(string_value.as_string().utf8_string_view()).value()); } // 14.4.1.4 GetRoundingIncrementOption ( options ), https://tc39.es/proposal-temporal/#sec-temporal-getroundingincrementoption ThrowCompletionOr get_rounding_increment_option(VM& vm, Object const& options) { // 1. Let value be ? Get(options, "roundingIncrement"). auto value = TRY(options.get(vm.names.roundingIncrement)); // 2. If value is undefined, return 1𝔽. if (value.is_undefined()) return 1; // 3. Let integerIncrement be ? ToIntegerWithTruncation(value). auto integer_increment = TRY(to_integer_with_truncation(vm, value, ErrorType::OptionIsNotValidValue, value, "roundingIncrement"sv)); // 4. If integerIncrement < 1 or integerIncrement > 10**9, throw a RangeError exception. if (integer_increment < 1 || integer_increment > 1'000'000'000u) return vm.throw_completion(ErrorType::OptionIsNotValidValue, value, "roundingIncrement"); // 5. Return integerIncrement. return static_cast(integer_increment); } }