/* * Copyright (c) 2020, Itamar S. * Copyright (c) 2021, Andreas Kling * Copyright (c) 2021, the SerenityOS developers. * Copyright (c) 2022, Jesse Buhagiar * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ELF { static ByteString s_main_program_path; // The order of objects here corresponds to the "load order" from POSIX specification. static OrderedHashMap> s_global_objects; using LibCExitFunction = void (*)(int); using DlIteratePhdrCallbackFunction = int (*)(struct dl_phdr_info*, size_t, void*); using DlIteratePhdrFunction = int (*)(DlIteratePhdrCallbackFunction, void*); using CallFiniFunctionsFunction = void (*)(); struct TLSData { size_t total_tls_size { 0 }; void* tls_template { nullptr }; size_t tls_template_size { 0 }; size_t alignment { 0 }; size_t static_tls_region_size { 0 }; size_t static_tls_region_alignment { 0 }; }; static TLSData s_tls_data; static char** s_envp = nullptr; static __pthread_mutex_t s_loader_lock = __PTHREAD_MUTEX_INITIALIZER; static ByteString s_cwd; static bool s_allowed_to_check_environment_variables { false }; static bool s_do_breakpoint_trap_before_entry { false }; static StringView s_ld_library_path; static StringView s_main_program_pledge_promises; static ByteString s_loader_pledge_promises; static HashMap s_magic_functions; Optional DynamicLinker::lookup_global_symbol(StringView name) { auto symbol = DynamicObject::HashSymbol { name }; for (auto& lib : s_global_objects) { auto res = lib.value->lookup_symbol(symbol); if (!res.has_value()) continue; if (res.value().bind == STB_GLOBAL || res.value().bind == STB_WEAK) return res; // We don't want to allow local symbols to be pulled in to other modules } if (auto magic_lookup = s_magic_functions.get(name); magic_lookup.has_value()) return *magic_lookup; return {}; } static Result, DlErrorMessage> map_library(ByteString const& filepath, int fd) { VERIFY(filepath.starts_with('/')); auto loader = TRY(ELF::DynamicLoader::try_create(fd, filepath)); static size_t s_current_tls_offset = 0; if constexpr (TLS_VARIANT == 1) { if (loader->tls_alignment_of_current_object() != 0) s_current_tls_offset = align_up_to(s_current_tls_offset, loader->tls_alignment_of_current_object()); loader->set_tls_offset(s_current_tls_offset); s_current_tls_offset += loader->tls_size_of_current_object(); } else if constexpr (TLS_VARIANT == 2) { s_current_tls_offset -= loader->tls_size_of_current_object(); if (loader->tls_alignment_of_current_object() != 0) s_current_tls_offset = align_down_to(s_current_tls_offset, loader->tls_alignment_of_current_object()); loader->set_tls_offset(s_current_tls_offset); } // This actually maps the library at the intended and final place. auto main_library_object = loader->map(); s_global_objects.set(filepath, *main_library_object); return loader; } Optional DynamicLinker::resolve_library(ByteString const& name, DynamicObject const& parent_object) { // Absolute and relative (to the current working directory) paths are already considered resolved. // However, ensure that the returned path is absolute and canonical, so pass it through LexicalPath. if (name.contains('/')) return LexicalPath::absolute_path(s_cwd, name); Vector search_paths; // Search RPATH values indicated by the ELF (only if RUNPATH is not present). if (parent_object.runpath().is_empty()) search_paths.extend(parent_object.rpath().split_view(':')); // Scan the LD_LIBRARY_PATH environment variable if applicable. search_paths.extend(s_ld_library_path.split_view(':')); // Search RUNPATH values indicated by the ELF. search_paths.extend(parent_object.runpath().split_view(':')); // Last are the default search paths. search_paths.append("/usr/lib"sv); search_paths.append("/usr/local/lib"sv); for (auto const& search_path : search_paths) { LexicalPath library_path(search_path.replace("$ORIGIN"sv, LexicalPath::dirname(parent_object.filepath()), ReplaceMode::FirstOnly)); ByteString library_name = library_path.append(name).string(); if (access(library_name.characters(), F_OK) == 0) { if (!library_name.starts_with('/')) { // FIXME: Non-absolute paths should resolve from the current working directory. However, // since that's almost never the effect that is actually desired, let's print // a warning and only implement it once something actually needs that behavior. dbgln("\033[33mWarning:\033[0m Resolving library '{}' resulted in non-absolute path '{}'. Check your binary for relative RPATHs and RUNPATHs.", name, library_name); } return library_name; } } return {}; } static Result, DlErrorMessage> map_library(ByteString const& path) { VERIFY(path.starts_with('/')); int fd = open(path.characters(), O_RDONLY); if (fd < 0) return DlErrorMessage { ByteString::formatted("Could not open shared library '{}': {}", path, strerror(errno)) }; return map_library(path, fd); } static Vector get_dependencies(NonnullRefPtr const& loader) { auto name = LexicalPath::basename(loader->filepath()); Vector dependencies; loader->for_each_needed_library([&dependencies, &name](auto needed_name) { if (name == needed_name) return; dependencies.append(needed_name); }); return dependencies; } struct DependencyOrdering { Vector> load_order; // In addition to "load order" (and "dependency order") from POSIX, we also define "topological // order". This is a topological ordering of "NEEDED" dependencies, where we ignore edges that // result in cycles. Edges that are not ignored are called true dependencies. Vector> topological_order; }; static ErrorOr map_dependencies(NonnullRefPtr const& loader) { Vector> load_order = { loader }; HashMap> current_loaders; current_loaders.set(loader->filepath(), loader); // First, we do BFS on NEEDED dependencies graph while using load_order as a poor man's queue. // NOTE: BFS is mandated by POSIX: https://pubs.opengroup.org/onlinepubs/9699919799/functions/dlopen.html#:~:text=Dependency%20ordering%20uses%20a%20breadth%2Dfirst%20order%20starting . for (size_t i = 0; i < load_order.size(); ++i) { auto loader = load_order[i]; auto const& parent_object = loader->dynamic_object(); dbgln_if(DYNAMIC_LOAD_DEBUG, "mapping dependencies for: {}", loader->filepath()); for (auto const& needed_name : get_dependencies(loader)) { dbgln_if(DYNAMIC_LOAD_DEBUG, "needed library: {}", needed_name.characters()); auto maybe_dependency_path = DynamicLinker::resolve_library(needed_name, parent_object); if (!maybe_dependency_path.has_value()) return DlErrorMessage { ByteString::formatted("Could not find required shared library: {}", needed_name) }; auto dependency_path = maybe_dependency_path.release_value(); if (!s_global_objects.contains(dependency_path)) { auto dependency_loader = TRY(map_library(dependency_path)); load_order.append(dependency_loader); current_loaders.set(dependency_loader->filepath(), dependency_loader); } if (auto it = current_loaders.find(dependency_path); it != current_loaders.end()) { // Even if the object is already mapped, the dependency might still affect topological order. loader->add_dependency(it->value); } } dbgln_if(DYNAMIC_LOAD_DEBUG, "mapped dependencies for {}", loader->filepath()); } // Next, we compute topological order using the classical algorithm involving DFS. Topological // ordering is used for calling initializers: https://www.sco.com/developers/gabi/latest/ch5.dynamic.html#init_fini . Vector> topological_order; topological_order.ensure_capacity(load_order.size()); loader->compute_topological_order(topological_order); VERIFY(topological_order.size() == load_order.size()); VERIFY(topological_order.last()->filepath() == loader->filepath()); return DependencyOrdering { .load_order = move(load_order), .topological_order = move(topological_order), }; } static ErrorOr __create_new_tls_region() { void* static_tls_region = serenity_mmap(nullptr, s_tls_data.static_tls_region_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0, s_tls_data.static_tls_region_alignment, "Static TLS Data"); if (static_tls_region == MAP_FAILED) return Error::from_syscall("mmap"sv, -errno); auto thread_pointer = calculate_tp_value_from_static_tls_region_address(bit_cast(static_tls_region), s_tls_data.tls_template_size, s_tls_data.static_tls_region_alignment); VERIFY(thread_pointer % s_tls_data.static_tls_region_alignment == 0); auto* tcb = get_tcb_pointer_from_thread_pointer(thread_pointer); // FIXME: Add support for dynamically-allocated TLS blocks. tcb->dynamic_thread_vector = nullptr; #if ARCH(X86_64) tcb->thread_pointer = bit_cast(thread_pointer); #endif auto* static_tls_blocks = get_pointer_to_first_static_tls_block_from_thread_pointer(thread_pointer, s_tls_data.tls_template_size, s_tls_data.static_tls_region_alignment); if (s_tls_data.tls_template_size != 0) memcpy(static_tls_blocks, s_tls_data.tls_template, s_tls_data.tls_template_size); return thread_pointer; } static ErrorOr __free_tls_region(FlatPtr thread_pointer) { auto* static_tls_region = get_pointer_to_static_tls_region_from_thread_pointer(thread_pointer, s_tls_data.tls_template_size, s_tls_data.static_tls_region_alignment); if (munmap(static_tls_region, s_tls_data.static_tls_region_size) != 0) return Error::from_syscall("mmap"sv, -errno); return {}; } static void allocate_tls(Vector> const& loaded_objects) { // FIXME: Use the max p_align of all TLS segments. // We currently pass s_tls_data.static_tls_region_alignment as the alignment to mmap, // so we would have to manually insert padding, as mmap only accepts alignments that // are multiples of PAGE_SIZE. Or instead use aligned_alloc/posix_memalign? s_tls_data.alignment = PAGE_SIZE; for (auto const& object : loaded_objects) { dbgln_if(DYNAMIC_LOAD_DEBUG, "{}: TLS Size: {}, TLS Alignment: {}", object->filepath(), object->tls_size_of_current_object(), object->tls_alignment_of_current_object()); s_tls_data.total_tls_size += object->tls_size_of_current_object() + object->tls_alignment_of_current_object(); } if (s_tls_data.total_tls_size == 0) return; s_tls_data.tls_template_size = align_up_to(s_tls_data.total_tls_size, PAGE_SIZE); s_tls_data.tls_template = mmap_with_name(nullptr, s_tls_data.tls_template_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0, "TLS Template"); if (s_tls_data.tls_template == MAP_FAILED) { dbgln("Failed to allocate memory for the TLS template"); VERIFY_NOT_REACHED(); } s_tls_data.static_tls_region_alignment = max(s_tls_data.alignment, sizeof(ThreadControlBlock)); s_tls_data.static_tls_region_size = calculate_static_tls_region_size(s_tls_data.tls_template_size, s_tls_data.static_tls_region_alignment); auto tls_template = Bytes(s_tls_data.tls_template, s_tls_data.tls_template_size); // Initialize TLS data for (auto const& object : loaded_objects) object->copy_initial_tls_data_into(tls_template); set_thread_pointer_register(MUST(__create_new_tls_region())); } static int __dl_iterate_phdr(DlIteratePhdrCallbackFunction callback, void* data) { pthread_mutex_lock(&s_loader_lock); ScopeGuard unlock_guard = [] { pthread_mutex_unlock(&s_loader_lock); }; for (auto& it : s_global_objects) { auto& object = it.value; auto info = dl_phdr_info { .dlpi_addr = (Elf_Addr)object->base_address().as_ptr(), .dlpi_name = object->filepath().characters(), .dlpi_phdr = object->program_headers(), .dlpi_phnum = object->program_header_count() }; auto res = callback(&info, sizeof(info), data); if (res != 0) return res; } return 0; } int DynamicLinker::iterate_over_loaded_shared_objects(int (*callback)(struct dl_phdr_info* info, size_t size, void* data), void* data) { return __dl_iterate_phdr(callback, data); } static void initialize_libc(DynamicObject& libc) { auto res = libc.lookup_symbol("__libc_init"sv); VERIFY(res.has_value()); using libc_init_func = decltype(__libc_init); ((libc_init_func*)res.value().address.as_ptr())(); } static void drop_loader_promise(StringView promise_to_drop) { if (s_main_program_pledge_promises.is_empty() || s_loader_pledge_promises.is_empty()) return; s_loader_pledge_promises = s_loader_pledge_promises.replace(promise_to_drop, ""sv, ReplaceMode::All); auto extended_promises = ByteString::formatted("{} {}", s_main_program_pledge_promises, s_loader_pledge_promises); Syscall::SC_pledge_params params { { extended_promises.characters(), extended_promises.length() }, { nullptr, 0 }, }; int rc = syscall(SC_pledge, ¶ms); if (rc < 0 && rc > -EMAXERRNO) { warnln("Failed to drop loader pledge promise: {}. errno={}", promise_to_drop, errno); _exit(1); } } static ErrorOr link_main_library(int flags, DependencyOrdering const& objects) { // Verify that all objects are already mapped for (auto& loader : objects.load_order) VERIFY(!loader->map()); // FIXME: Are there any observable differences between doing stages 2 and 3 in topological vs // load order? POSIX says to do relocations in load order but does the order really // matter here? for (auto& loader : objects.load_order) { bool success = loader->link(flags); if (!success) { return DlErrorMessage { ByteString::formatted("Failed to link library {}", loader->filepath()) }; } } for (auto& loader : objects.load_order) { auto result = loader->load_stage_3(flags); VERIFY(!result.is_error()); auto& object = result.value(); if (loader->filepath().ends_with("/libc.so"sv)) { initialize_libc(*object); } if (loader->filepath().ends_with("/libsystem.so"sv)) { VERIFY(!loader->text_segments().is_empty()); for (auto const& segment : loader->text_segments()) { auto flags = static_cast(VirtualMemoryRangeFlags::SyscallCode) | static_cast(VirtualMemoryRangeFlags::Immutable); if (syscall(SC_annotate_mapping, segment.address().get(), flags)) { VERIFY_NOT_REACHED(); } } } else { for (auto const& segment : loader->text_segments()) { auto flags = static_cast(VirtualMemoryRangeFlags::Immutable); if (syscall(SC_annotate_mapping, segment.address().get(), flags)) { VERIFY_NOT_REACHED(); } } } } drop_loader_promise("prot_exec"sv); for (auto& loader : objects.topological_order) loader->load_stage_4(); return {}; } static Result __dlclose(void* handle) { dbgln_if(DYNAMIC_LOAD_DEBUG, "__dlclose: {}", handle); pthread_mutex_lock(&s_loader_lock); ScopeGuard unlock_guard = [] { pthread_mutex_unlock(&s_loader_lock); }; // FIXME: this will not currently destroy the dynamic object // because we're intentionally holding a strong reference to it // via s_global_objects until there's proper unload support. auto object = static_cast(handle); object->unref(); return {}; } static Optional verify_tls_for_dlopen(DynamicLoader const& loader) { if (loader.tls_size_of_current_object() == 0) return {}; if (s_tls_data.total_tls_size + loader.tls_size_of_current_object() + loader.tls_alignment_of_current_object() > s_tls_data.tls_template_size) return DlErrorMessage("TLS size too large"); bool tls_data_is_all_zero = true; loader.image().for_each_program_header([&loader, &tls_data_is_all_zero](ELF::Image::ProgramHeader program_header) { if (program_header.type() != PT_TLS) return IterationDecision::Continue; auto* tls_data = (u8 const*)loader.image().base_address() + program_header.offset(); for (size_t i = 0; i < program_header.size_in_image(); ++i) { if (tls_data[i] != 0) { tls_data_is_all_zero = false; break; } } return IterationDecision::Break; }); if (tls_data_is_all_zero) return {}; return DlErrorMessage("Using dlopen() with libraries that have non-zeroed TLS is currently not supported"); } static Result __dlopen(char const* filename, int flags) { // FIXME: RTLD_NOW and RTLD_LOCAL are not supported flags &= ~RTLD_NOW; flags |= RTLD_LAZY; flags &= ~RTLD_LOCAL; flags |= RTLD_GLOBAL; dbgln_if(DYNAMIC_LOAD_DEBUG, "__dlopen invoked, filename={}, flags={}", filename, flags); if (pthread_mutex_trylock(&s_loader_lock) != 0) return DlErrorMessage { "Nested calls to dlopen() are not permitted." }; ScopeGuard unlock_guard = [] { pthread_mutex_unlock(&s_loader_lock); }; // FIXME: We must resolve filename relative to the caller, not the main executable. auto const& [name, parent_object] = *s_global_objects.begin(); VERIFY(name == s_main_program_path); auto library_path = (filename ? DynamicLinker::resolve_library(filename, parent_object) : s_main_program_path); if (!library_path.has_value()) return DlErrorMessage { ByteString::formatted("Could not find required shared library: {}", filename) }; auto existing_elf_object = s_global_objects.get(library_path.value()); if (existing_elf_object.has_value()) { // It's up to the caller to release the ref with dlclose(). existing_elf_object.value()->ref(); return *existing_elf_object; } auto loader = TRY(map_library(library_path.value())); // FIXME: This only checks main shared object but not its dependencies. if (auto error = verify_tls_for_dlopen(loader); error.has_value()) return error.value(); auto objects = TRY(map_dependencies(loader)); TRY(link_main_library(flags, objects)); s_tls_data.total_tls_size += loader->tls_size_of_current_object() + loader->tls_alignment_of_current_object(); auto object = s_global_objects.get(library_path.value()); if (!object.has_value()) return DlErrorMessage { "Could not load ELF object." }; // It's up to the caller to release the ref with dlclose(). object.value()->ref(); return *object; } static Result __dlsym(void* handle, char const* symbol_name) { dbgln_if(DYNAMIC_LOAD_DEBUG, "__dlsym: {}, {}", handle, symbol_name); pthread_mutex_lock(&s_loader_lock); ScopeGuard unlock_guard = [] { pthread_mutex_unlock(&s_loader_lock); }; StringView symbol_name_view { symbol_name, strlen(symbol_name) }; Optional symbol; if (handle) { auto object = static_cast(handle); symbol = object->lookup_symbol(symbol_name_view); } else { // When handle is 0 (RTLD_DEFAULT) we should look up the symbol in all global modules // https://pubs.opengroup.org/onlinepubs/009604499/functions/dlsym.html symbol = DynamicLinker::lookup_global_symbol(symbol_name_view); } if (!symbol.has_value()) return DlErrorMessage { ByteString::formatted("Symbol {} not found", symbol_name_view) }; if (symbol.value().type == STT_GNU_IFUNC) return (void*)reinterpret_cast(symbol.value().address.as_ptr())(); return symbol.value().address.as_ptr(); } static Result __dladdr(void const* addr, Dl_info* info) { VirtualAddress user_addr { addr }; pthread_mutex_lock(&s_loader_lock); ScopeGuard unlock_guard = [] { pthread_mutex_unlock(&s_loader_lock); }; RefPtr best_matching_library; VirtualAddress best_library_offset; for (auto& lib : s_global_objects) { if (user_addr < lib.value->base_address()) continue; auto offset = user_addr - lib.value->base_address(); if (!best_matching_library || offset < best_library_offset) { best_matching_library = lib.value; best_library_offset = offset; } } if (!best_matching_library) { return DlErrorMessage { "No library found which contains the specified address" }; } Optional best_matching_symbol; best_matching_library->for_each_symbol([&](auto const& symbol) { if (user_addr < symbol.address() || user_addr > symbol.address().offset(symbol.size())) return; best_matching_symbol = symbol; }); info->dli_fbase = best_matching_library->base_address().as_ptr(); // This works because we don't support unloading objects. info->dli_fname = best_matching_library->filepath().characters(); if (best_matching_symbol.has_value()) { info->dli_saddr = best_matching_symbol.value().address().as_ptr(); info->dli_sname = best_matching_symbol.value().raw_name(); } else { info->dli_saddr = nullptr; info->dli_sname = nullptr; } return {}; } static void __call_fini_functions() { typedef void (*FiniFunc)(); // FIXME: This is not and never has been the correct order to call finalizers in. for (auto& it : s_global_objects) { auto object = it.value; if (object->has_fini_array_section()) { auto fini_array_section = object->fini_array_section(); FiniFunc* fini_begin = (FiniFunc*)(fini_array_section.address().as_ptr()); FiniFunc* fini_end = fini_begin + fini_array_section.entry_count(); while (fini_begin != fini_end) { --fini_end; // Android sources claim that these can be -1, to be ignored. // 0 deffiniely shows up. Apparently 0/-1 are valid? Confusing. if (!*fini_end || ((FlatPtr)*fini_end == (FlatPtr)-1)) continue; (*fini_end)(); } } if (object->has_fini_section()) { auto fini_function = object->fini_section_function(); (fini_function)(); } } } static char** __environ_value() { return s_envp; } static void read_environment_variables() { for (char** env = s_envp; *env; ++env) { StringView env_string { *env, strlen(*env) }; if (env_string == "_LOADER_BREAKPOINT=1"sv) { s_do_breakpoint_trap_before_entry = true; } constexpr auto library_path_string = "LD_LIBRARY_PATH="sv; if (env_string.starts_with(library_path_string)) { s_ld_library_path = env_string.substring_view(library_path_string.length()); } constexpr auto main_pledge_promises_key = "_LOADER_MAIN_PROGRAM_PLEDGE_PROMISES="sv; if (env_string.starts_with(main_pledge_promises_key)) { s_main_program_pledge_promises = env_string.substring_view(main_pledge_promises_key.length()); } constexpr auto loader_pledge_promises_key = "_LOADER_PLEDGE_PROMISES="sv; if (env_string.starts_with(loader_pledge_promises_key)) { s_loader_pledge_promises = env_string.substring_view(loader_pledge_promises_key.length()); } } } EntryPointFunction ELF::DynamicLinker::linker_main(ByteString&& main_program_path, int main_program_fd, bool is_secure, char** envp) { VERIFY(main_program_path.starts_with('/')); s_envp = envp; auto define_magic_function = [&](StringView name, auto function) { s_magic_functions.set(name, DynamicObject::SymbolLookupResult { .size = 8, .address = VirtualAddress { reinterpret_cast(function) }, .bind = STB_GLOBAL, .type = STT_FUNC, }); }; define_magic_function("__call_fini_functions"sv, __call_fini_functions); define_magic_function("__create_new_tls_region"sv, __create_new_tls_region); define_magic_function("__dl_iterate_phdr"sv, __dl_iterate_phdr); define_magic_function("__dladdr"sv, __dladdr); define_magic_function("__dlclose"sv, __dlclose); define_magic_function("__dlopen"sv, __dlopen); define_magic_function("__dlsym"sv, __dlsym); define_magic_function("__environ_value"sv, __environ_value); define_magic_function("__free_tls_region"sv, __free_tls_region); char* raw_current_directory = getcwd(nullptr, 0); s_cwd = raw_current_directory; free(raw_current_directory); s_allowed_to_check_environment_variables = !is_secure; if (s_allowed_to_check_environment_variables) read_environment_variables(); s_main_program_path = main_program_path; // NOTE: We always map the main library first, since it may require // placement at a specific address. auto result1 = map_library(main_program_path, main_program_fd); if (result1.is_error()) { warnln("{}", result1.error().text); fflush(stderr); _exit(1); } auto executable = result1.release_value(); size_t needed_dependencies = 0; executable->for_each_needed_library([&needed_dependencies](auto) { needed_dependencies++; }); bool has_interpreter = false; executable->image().for_each_program_header([&has_interpreter](const ELF::Image::ProgramHeader& program_header) { if (program_header.type() == PT_INTERP) has_interpreter = true; }); // NOTE: Refuse to run a program if it has a dynamic section, // it is pie, and does not have an interpreter or needed libraries // which is also called "static-pie". These binaries are probably // some sort of ELF packers or dynamic loaders, and there's no added // value in trying to run them, as they will probably crash due to trying // to invoke syscalls from a non-syscall memory executable (code) region. if (executable->is_dynamic() && (!has_interpreter || needed_dependencies == 0) && executable->dynamic_object().is_pie()) { char const message[] = R"(error: the dynamic loader can't reasonably run static-pie ELF. static-pie ELFs might run executable code that invokes syscalls outside of the defined syscall memory executable (code) region security measure we implement. Examples of static-pie ELF objects are ELF packers, and the system dynamic loader itself.)"; fprintf(stderr, "%s", message); fflush(stderr); _exit(1); } auto result2 = map_dependencies(executable); if (result2.is_error()) { warnln("{}", result2.error().text); fflush(stderr); _exit(1); } auto objects = result2.release_value(); dbgln_if(DYNAMIC_LOAD_DEBUG, "loaded all dependencies"); for ([[maybe_unused]] auto& object : objects.load_order) { dbgln_if(DYNAMIC_LOAD_DEBUG, "{} - tls size: {}, tls alignment: {}, tls offset: {}", object->filepath(), object->tls_size_of_current_object(), object->tls_alignment_of_current_object(), object->tls_offset()); } allocate_tls(objects.load_order); auto result = link_main_library(RTLD_GLOBAL | RTLD_LAZY, objects); if (result.is_error()) { warnln("{}", result.error().text); _exit(1); } drop_loader_promise("rpath"sv); auto& main_executable_loader = objects.load_order.first(); auto entry_point = main_executable_loader->image().entry(); if (main_executable_loader->is_dynamic()) entry_point = entry_point.offset(main_executable_loader->base_address().get()); auto entry_point_function = reinterpret_cast(entry_point.as_ptr()); int rc = syscall(SC_prctl, PR_SET_NO_NEW_SYSCALL_REGION_ANNOTATIONS, 0, 0, nullptr); if (rc < 0) { VERIFY_NOT_REACHED(); } rc = syscall(SC_prctl, PR_SET_NO_TRANSITION_TO_EXECUTABLE_FROM_WRITABLE_PROT, 0, 0, nullptr); if (rc < 0) { VERIFY_NOT_REACHED(); } dbgln_if(DYNAMIC_LOAD_DEBUG, "Jumping to entry point: {:p}", entry_point_function); if (s_do_breakpoint_trap_before_entry) { #if ARCH(AARCH64) asm("brk #0"); #elif ARCH(RISCV64) asm("ebreak"); #elif ARCH(X86_64) asm("int3"); #else # error "Unknown architecture" #endif } return entry_point_function; } }