/* * Copyright (c) 2020, Ali Mohammad Pur * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include //#define NT_DEBUG namespace Crypto { namespace NumberTheory { static auto ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b) -> UnsignedBigInteger { if (b == 1) return { 1 }; auto a = a_; auto u = a; if (a.words()[0] % 2 == 0) u = u.add(b); auto v = b; auto x = UnsignedBigInteger { 0 }; auto d = b.sub(1); while (!(v == 1)) { while (v < u) { u = u.sub(v); d = d.add(x); while (u.words()[0] % 2 == 0) { if (d.words()[0] % 2 == 1) { d = d.add(b); } u = u.divide(2).quotient; d = d.divide(2).quotient; } } v = v.sub(u); x = x.add(d); while (v.words()[0] % 2 == 0) { if (x.words()[0] % 2 == 1) { x = x.add(b); } v = v.divide(2).quotient; x = x.divide(2).quotient; } } return x.divide(b).remainder; } static auto ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m) -> UnsignedBigInteger { if (m == 1) return 0; UnsignedBigInteger ep { e }; UnsignedBigInteger base { b }; UnsignedBigInteger exp { 1 }; while (!(ep < 1)) { #ifdef NT_DEBUG dbg() << ep.to_base10(); #endif if (ep.words()[0] % 2 == 1) { exp = exp.multiply(base).divide(m).remainder; } ep = ep.divide(2).quotient; base = base.multiply(base).divide(m).remainder; } return exp; } static auto GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b) -> UnsignedBigInteger { UnsignedBigInteger a_ { a }, b_ { b }; for (;;) { if (a_ == 0) return b_; b_ = b_.divide(a_).remainder; if (b_ == 0) return a_; a_ = a_.divide(b_).remainder; } } static auto LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b) -> UnsignedBigInteger { auto temp = GCD(a, b); auto div = a.divide(temp); #ifdef NT_DEBUG dbg() << "quot: " << div.quotient << " rem: " << div.remainder; #endif return temp == 0 ? 0 : (a.divide(temp).quotient.multiply(b)); } template static bool MR_primality_test(UnsignedBigInteger n, const Vector& tests) { auto prev = n.sub({ 1 }); auto b = prev; auto r = 0; auto div_result = b.divide(2); while (div_result.quotient == 0) { div_result = b.divide(2); b = div_result.quotient; ++r; } for (size_t i = 0; i < tests.size(); ++i) { auto return_ = true; if (n < tests[i]) continue; auto x = ModularPower(tests[i], b, n); if (x == 1 || x == prev) continue; for (auto d = r - 1; d != 0; --d) { x = ModularPower(x, 2, n); if (x == 1) return false; if (x == prev) { return_ = false; break; } } if (return_) return false; } return true; } static UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max) { ASSERT(min < max); auto range = max.minus(min); UnsignedBigInteger base; // FIXME: Need a cryptographically secure rng auto size = range.trimmed_length() * sizeof(u32); u8 buf[size]; arc4random_buf(buf, size); Vector vec; for (size_t i = 0; i < size / sizeof(u32); ++i) { vec.append(*(u32*)buf + i); } UnsignedBigInteger offset { move(vec) }; return offset.add(min); } static bool is_probably_prime(const UnsignedBigInteger& p) { if (p == 2 || p == 3 || p == 5) return true; if (p < 49) return true; Vector tests; UnsignedBigInteger seven { 7 }; for (size_t i = 0; i < tests.size(); ++i) tests.append(random_number(seven, p.sub(2))); return MR_primality_test(p, tests); } static UnsignedBigInteger random_big_prime(size_t bits) { ASSERT(bits >= 33); UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33); UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).sub(1); for (;;) { auto p = random_number(min, max); if (is_probably_prime(p)) return p; } } } }