/*
 * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Debug.h>
#include <LibWasm/AbstractMachine/AbstractMachine.h>
#include <LibWasm/AbstractMachine/Configuration.h>
#include <LibWasm/AbstractMachine/Interpreter.h>
#include <LibWasm/Opcode.h>
#include <LibWasm/Printer/Printer.h>
#include <math.h>

namespace Wasm {

void Interpreter::interpret(Configuration& configuration)
{
    auto& instructions = configuration.frame()->expression().instructions();
    auto max_ip_value = InstructionPointer { instructions.size() };
    auto& current_ip_value = configuration.ip();

    while (current_ip_value < max_ip_value) {
        auto& instruction = instructions[current_ip_value.value()];
        interpret(configuration, current_ip_value, instruction);
        ++current_ip_value;
    }
}

void Interpreter::branch_to_label(Configuration& configuration, LabelIndex index)
{
    auto label = configuration.nth_label(index.value());
    VERIFY(label.has_value());
    NonnullOwnPtrVector<Value> results;
    // Pop results in order
    for (size_t i = 0; i < label->arity(); ++i)
        results.append(move(configuration.stack().pop().get<NonnullOwnPtr<Value>>()));

    size_t drop_count = index.value() + 1;
    if (label->continuation() < configuration.ip())
        --drop_count;

    for (; !configuration.stack().is_empty();) {
        auto entry = configuration.stack().pop();
        if (entry.has<NonnullOwnPtr<Label>>()) {
            if (drop_count-- == 0)
                break;
        }
    }

    // Push results in reverse
    for (size_t i = results.size(); i > 0; --i)
        configuration.stack().push(move(static_cast<Vector<NonnullOwnPtr<Value>>&>(results)[i - 1]));

    configuration.ip() = label->continuation() + 1;
}

ReadonlyBytes Interpreter::load_from_memory(Configuration& configuration, const Instruction& instruction, size_t size)
{
    auto& address = configuration.frame()->module().memories().first();
    auto memory = configuration.store().get(address);
    VERIFY(memory);
    auto& arg = instruction.arguments().get<Instruction::MemoryArgument>();
    auto base = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
    VERIFY(base.has_value());
    auto instance_address = base.value() + static_cast<i64>(arg.offset);
    if (instance_address < 0 || static_cast<u64>(instance_address + size) > memory->size()) {
        dbgln("LibWasm: Memory access out of bounds (expected 0 > {} and {} > {})", instance_address, instance_address + size, memory->size());
        return {};
    }
    dbgln_if(WASM_TRACE_DEBUG, "load({} : {}) -> stack", instance_address, size);
    return memory->data().bytes().slice(instance_address, size);
}

void Interpreter::store_to_memory(Configuration& configuration, const Instruction& instruction, ReadonlyBytes data)
{
    auto& address = configuration.frame()->module().memories().first();
    auto memory = configuration.store().get(address);
    VERIFY(memory);
    auto& arg = instruction.arguments().get<Instruction::MemoryArgument>();
    auto base = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
    VERIFY(base.has_value());
    auto instance_address = base.value() + static_cast<i64>(arg.offset);
    if (instance_address < 0 || static_cast<u64>(instance_address + data.size()) > memory->size()) {
        dbgln("LibWasm: Memory access out of bounds (expected 0 > {} and {} > {})", instance_address, instance_address + data.size(), memory->size());
        return;
    }
    dbgln_if(WASM_TRACE_DEBUG, "tempoaray({}b) -> store({})", data.size(), instance_address);
    data.copy_to(memory->data().bytes().slice(instance_address, data.size()));
}

void Interpreter::call_address(Configuration& configuration, FunctionAddress address)
{
    auto instance = configuration.store().get(address);
    VERIFY(instance);
    const FunctionType* type { nullptr };
    instance->visit([&](const auto& function) { type = &function.type(); });
    VERIFY(type);
    Vector<Value> args;
    args.ensure_capacity(type->parameters().size());
    for (size_t i = 0; i < type->parameters().size(); ++i) {
        args.prepend(move(*configuration.stack().pop().get<NonnullOwnPtr<Value>>()));
    }
    Configuration function_configuration { configuration.store() };
    function_configuration.depth() = configuration.depth() + 1;
    auto result = function_configuration.call(address, move(args));
    if (result.is_trap())
        TODO();
    for (auto& entry : result.values())
        configuration.stack().push(make<Value>(move(entry)));
}

#define BINARY_NUMERIC_OPERATION(type, operator, ...)                                             \
    do {                                                                                          \
        auto rhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>();           \
        auto lhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>();           \
        VERIFY(lhs.has_value());                                                                  \
        VERIFY(rhs.has_value());                                                                  \
        auto result = lhs.value() operator rhs.value();                                           \
        dbgln_if(WASM_TRACE_DEBUG, "{} {} {} = {}", lhs.value(), #operator, rhs.value(), result); \
        configuration.stack().push(make<Value>(__VA_ARGS__(result)));                             \
        return;                                                                                   \
    } while (false)

#define BINARY_PREFIX_NUMERIC_OPERATION(type, operation, ...)                                       \
    do {                                                                                            \
        auto rhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>();             \
        auto lhs = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<type>();             \
        VERIFY(lhs.has_value());                                                                    \
        VERIFY(rhs.has_value());                                                                    \
        auto result = operation(lhs.value(), rhs.value());                                          \
        dbgln_if(WASM_TRACE_DEBUG, "{}({} {}) = {}", #operation, lhs.value(), rhs.value(), result); \
        configuration.stack().push(make<Value>(__VA_ARGS__(result)));                               \
        return;                                                                                     \
    } while (false)

#define UNARY_MAP(pop_type, operation, ...)                                                   \
    do {                                                                                      \
        auto value = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<pop_type>(); \
        VERIFY(value.has_value());                                                            \
        auto result = operation(value.value());                                               \
        dbgln_if(WASM_TRACE_DEBUG, "map({}) {} = {}", #operation, value.value(), result);     \
        configuration.stack().push(make<Value>(__VA_ARGS__(result)));                         \
        return;                                                                               \
    } while (false)

#define UNARY_NUMERIC_OPERATION(type, operation) \
    UNARY_MAP(type, operation, type)

#define LOAD_AND_PUSH(read_type, push_type)                                            \
    do {                                                                               \
        auto slice = load_from_memory(configuration, instruction, sizeof(read_type));  \
        VERIFY(slice.size() == sizeof(read_type));                                     \
        if constexpr (sizeof(read_type) == 1)                                          \
            configuration.stack().push(make<Value>(static_cast<push_type>(slice[0]))); \
        else                                                                           \
            configuration.stack().push(make<Value>(read_value<push_type>(slice)));     \
        return;                                                                        \
    } while (false)

#define POP_AND_STORE(pop_type, store_type)                                                                               \
    do {                                                                                                                  \
        auto value = ConvertToRaw<pop_type> {}(*configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<pop_type>()); \
        dbgln_if(WASM_TRACE_DEBUG, "stack({}) -> temporary({}b)", value, sizeof(store_type));                             \
        store_to_memory(configuration, instruction, { &value, sizeof(store_type) });                                      \
        return;                                                                                                           \
    } while (false)

template<typename T>
static T read_value(ReadonlyBytes data)
{
    T value;
    InputMemoryStream stream { data };
    auto ok = IsSigned<T> ? LEB128::read_signed(stream, value) : LEB128::read_unsigned(stream, value);
    VERIFY(ok);
    return value;
}

template<>
float read_value<float>(ReadonlyBytes data)
{
    InputMemoryStream stream { data };
    LittleEndian<u32> raw_value;
    stream >> raw_value;
    VERIFY(!stream.has_any_error());
    return bit_cast<float>(static_cast<u32>(raw_value));
}

template<>
double read_value<double>(ReadonlyBytes data)
{
    InputMemoryStream stream { data };
    LittleEndian<u64> raw_value;
    stream >> raw_value;
    VERIFY(!stream.has_any_error());
    return bit_cast<double>(static_cast<u64>(raw_value));
}

template<typename T>
struct ConvertToRaw {
    T operator()(T value)
    {
        return value;
    }
};

template<>
struct ConvertToRaw<float> {
    u32 operator()(float value)
    {
        LittleEndian<u32> res;
        ReadonlyBytes bytes { &value, sizeof(float) };
        InputMemoryStream stream { bytes };
        stream >> res;
        VERIFY(!stream.has_any_error());
        return static_cast<u32>(res);
    }
};

template<>
struct ConvertToRaw<double> {
    u64 operator()(double value)
    {
        LittleEndian<u64> res;
        ReadonlyBytes bytes { &value, sizeof(double) };
        InputMemoryStream stream { bytes };
        stream >> res;
        VERIFY(!stream.has_any_error());
        return static_cast<u64>(res);
    }
};

void Interpreter::interpret(Configuration& configuration, InstructionPointer& ip, const Instruction& instruction)
{
    dbgln_if(WASM_TRACE_DEBUG, "Executing instruction {} at ip {}", instruction_name(instruction.opcode()), ip.value());
    if constexpr (WASM_TRACE_DEBUG)
        configuration.dump_stack();
    switch (instruction.opcode().value()) {
    case Instructions::unreachable.value():
        VERIFY_NOT_REACHED(); // FIXME: This is definitely not right :)
    case Instructions::nop.value():
        return;
    case Instructions::local_get.value():
        configuration.stack().push(make<Value>(configuration.frame()->locals()[instruction.arguments().get<LocalIndex>().value()]));
        return;
    case Instructions::local_set.value(): {
        auto entry = configuration.stack().pop();
        configuration.frame()->locals()[instruction.arguments().get<LocalIndex>().value()] = move(*entry.get<NonnullOwnPtr<Value>>());
        return;
    }
    case Instructions::i32_const.value():
        configuration.stack().push(make<Value>(ValueType { ValueType::I32 }, static_cast<i64>(instruction.arguments().get<i32>())));
        return;
    case Instructions::i64_const.value():
        configuration.stack().push(make<Value>(ValueType { ValueType::I64 }, instruction.arguments().get<i64>()));
        return;
    case Instructions::f32_const.value():
        configuration.stack().push(make<Value>(ValueType { ValueType::F32 }, static_cast<double>(instruction.arguments().get<float>())));
        return;
    case Instructions::f64_const.value():
        configuration.stack().push(make<Value>(ValueType { ValueType::F64 }, instruction.arguments().get<double>()));
        return;
    case Instructions::block.value(): {
        size_t arity = 0;
        auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>();
        if (args.block_type.kind() != BlockType::Empty)
            arity = 1;
        configuration.stack().push(make<Label>(arity, args.end_ip));
        return;
    }
    case Instructions::loop.value(): {
        size_t arity = 0;
        auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>();
        if (args.block_type.kind() != BlockType::Empty)
            arity = 1;
        configuration.stack().push(make<Label>(arity, ip.value() + 1));
        return;
    }
    case Instructions::if_.value(): {
        size_t arity = 0;
        auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>();
        if (args.block_type.kind() != BlockType::Empty)
            arity = 1;

        auto entry = configuration.stack().pop();
        auto value = entry.get<NonnullOwnPtr<Value>>()->to<i32>();
        VERIFY(value.has_value());
        configuration.stack().push(make<Label>(arity, args.end_ip));
        if (value.value() == 0) {
            if (args.else_ip.has_value()) {
                configuration.ip() = args.else_ip.value();
            } else {
                configuration.ip() = args.end_ip;
                configuration.stack().pop();
            }
        }
        return;
    }
    case Instructions::structured_end.value():
        return;
    case Instructions::structured_else.value(): {
        auto label = configuration.nth_label(0);
        VERIFY(label.has_value());
        NonnullOwnPtrVector<Value> results;
        // Pop results in order
        for (size_t i = 0; i < label->arity(); ++i)
            results.append(move(configuration.stack().pop().get<NonnullOwnPtr<Value>>()));

        // drop all locals
        for (; !configuration.stack().is_empty();) {
            auto entry = configuration.stack().pop();
            if (entry.has<NonnullOwnPtr<Label>>())
                break;
        }

        // Push results in reverse
        for (size_t i = 1; i < results.size() + 1; ++i)
            configuration.stack().push(move(static_cast<Vector<NonnullOwnPtr<Value>>&>(results)[results.size() - i]));

        if (instruction.opcode() == Instructions::structured_end)
            return;

        // Jump to the end label
        configuration.ip() = label->continuation();
        return;
    }
    case Instructions::return_.value(): {
        Vector<Stack::EntryType> results;
        auto& frame = *configuration.frame();
        results.ensure_capacity(frame.arity());
        for (size_t i = 0; i < frame.arity(); ++i)
            results.prepend(configuration.stack().pop());
        // drop all locals
        OwnPtr<Label> last_label;
        for (; !configuration.stack().is_empty();) {
            auto entry = configuration.stack().pop();
            if (entry.has<NonnullOwnPtr<Label>>()) {
                last_label = move(entry.get<NonnullOwnPtr<Label>>());
                continue;
            }
            if (entry.has<NonnullOwnPtr<Frame>>()) {
                // Push the frame back
                configuration.stack().push(move(entry));
                // Push its label back (if there is one)
                if (last_label)
                    configuration.stack().push(last_label.release_nonnull());
                break;
            }
            last_label.clear();
        }
        // Push the results back
        for (auto& result : results)
            configuration.stack().push(move(result));

        // Jump past the call/indirect instruction
        configuration.ip() = configuration.frame()->expression().instructions().size() - 1;
        return;
    }
    case Instructions::br.value():
        return branch_to_label(configuration, instruction.arguments().get<LabelIndex>());
    case Instructions::br_if.value(): {
        if (configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>().value_or(0) == 0)
            return;
        return branch_to_label(configuration, instruction.arguments().get<LabelIndex>());
    }
    case Instructions::br_table.value():
        goto unimplemented;
    case Instructions::call.value(): {
        auto index = instruction.arguments().get<FunctionIndex>();
        auto address = configuration.frame()->module().functions()[index.value()];
        dbgln_if(WASM_TRACE_DEBUG, "call({})", address.value());
        call_address(configuration, address);
        return;
    }
    case Instructions::call_indirect.value(): {
        auto& args = instruction.arguments().get<Instruction::IndirectCallArgs>();
        auto table_address = configuration.frame()->module().tables()[args.table.value()];
        auto table_instance = configuration.store().get(table_address);
        auto index = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
        VERIFY(index.has_value());
        if (index.value() < 0 || static_cast<size_t>(index.value()) >= table_instance->elements().size()) {
            dbgln("LibWasm: Element access out of bounds, expected {0} > 0 and {0} < {1}", index.value(), table_instance->elements().size());
            return;
        }
        auto element = table_instance->elements()[index.value()];
        if (!element.has_value() || !element->ref().has<FunctionAddress>()) {
            dbgln("LibWasm: call_indirect attempted with invalid address element (not a function)");
            return;
        }
        auto address = element->ref().get<FunctionAddress>();
        dbgln_if(WASM_TRACE_DEBUG, "call_indirect({} -> {})", index.value(), address.value());
        call_address(configuration, address);
        return;
    }
    case Instructions::i32_load.value():
        LOAD_AND_PUSH(i32, i32);
    case Instructions::i64_load.value():
        LOAD_AND_PUSH(i64, i64);
    case Instructions::f32_load.value():
        LOAD_AND_PUSH(float, float);
    case Instructions::f64_load.value():
        LOAD_AND_PUSH(double, double);
    case Instructions::i32_load8_s.value():
        LOAD_AND_PUSH(i8, i32);
    case Instructions::i32_load8_u.value():
        LOAD_AND_PUSH(u8, i32);
    case Instructions::i32_load16_s.value():
        LOAD_AND_PUSH(i16, i32);
    case Instructions::i32_load16_u.value():
        LOAD_AND_PUSH(u16, i32);
    case Instructions::i64_load8_s.value():
        LOAD_AND_PUSH(i8, i64);
    case Instructions::i64_load8_u.value():
        LOAD_AND_PUSH(u8, i64);
    case Instructions::i64_load16_s.value():
        LOAD_AND_PUSH(i16, i64);
    case Instructions::i64_load16_u.value():
        LOAD_AND_PUSH(u16, i64);
    case Instructions::i64_load32_s.value():
        LOAD_AND_PUSH(i32, i64);
    case Instructions::i64_load32_u.value():
        LOAD_AND_PUSH(u32, i64);
    case Instructions::i32_store.value():
        POP_AND_STORE(i32, i32);
    case Instructions::i64_store.value():
        POP_AND_STORE(i64, i64);
    case Instructions::f32_store.value():
        POP_AND_STORE(float, float);
    case Instructions::f64_store.value():
        POP_AND_STORE(double, double);
    case Instructions::i32_store8.value():
        POP_AND_STORE(i32, i8);
    case Instructions::i32_store16.value():
        POP_AND_STORE(i32, i16);
    case Instructions::i64_store8.value():
        POP_AND_STORE(i64, i8);
    case Instructions::i64_store16.value():
        POP_AND_STORE(i64, i16);
    case Instructions::i64_store32.value():
        POP_AND_STORE(i64, i32);
    case Instructions::local_tee.value(): {
        auto value = *configuration.stack().peek().get<NonnullOwnPtr<Value>>();
        auto local_index = instruction.arguments().get<LocalIndex>();
        dbgln_if(WASM_TRACE_DEBUG, "stack:peek -> locals({})", local_index.value());
        configuration.frame()->locals()[local_index.value()] = move(value);
        return;
    }
    case Instructions::global_get.value(): {
        auto global_index = instruction.arguments().get<GlobalIndex>();
        auto address = configuration.frame()->module().globals()[global_index.value()];
        dbgln_if(WASM_TRACE_DEBUG, "global({}) -> stack", address.value());
        auto global = configuration.store().get(address);
        configuration.stack().push(make<Value>(global->value()));
        return;
    }
    case Instructions::global_set.value(): {
        auto global_index = instruction.arguments().get<GlobalIndex>();
        auto address = configuration.frame()->module().globals()[global_index.value()];
        auto value = *configuration.stack().pop().get<NonnullOwnPtr<Value>>();
        dbgln_if(WASM_TRACE_DEBUG, "stack -> global({})", address.value());
        auto global = configuration.store().get(address);
        global->set_value(move(value));
        return;
    }
    case Instructions::memory_size.value(): {
        auto address = configuration.frame()->module().memories()[0];
        auto instance = configuration.store().get(address);
        auto pages = instance->size() / Constants::page_size;
        dbgln_if(WASM_TRACE_DEBUG, "memory.size -> stack({})", pages);
        configuration.stack().push(make<Value>((i32)pages));
        return;
    }
    case Instructions::memory_grow.value(): {
        auto address = configuration.frame()->module().memories()[0];
        auto instance = configuration.store().get(address);
        i32 old_pages = instance->size() / Constants::page_size;
        auto new_pages = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
        VERIFY(new_pages.has_value());
        if (instance->grow(new_pages.value() * Constants::page_size))
            configuration.stack().push(make<Value>((i32)old_pages));
        else
            configuration.stack().push(make<Value>((i32)-1));
        return;
    }
    case Instructions::table_get.value():
    case Instructions::table_set.value():
    case Instructions::ref_null.value():
    case Instructions::ref_func.value():
    case Instructions::ref_is_null.value():
        goto unimplemented;
    case Instructions::drop.value():
        configuration.stack().pop();
        return;
    case Instructions::select.value():
    case Instructions::select_typed.value(): {
        // Note: The type seems to only be used for validation.
        auto value = configuration.stack().pop().get<NonnullOwnPtr<Value>>()->to<i32>();
        VERIFY(value.has_value());
        dbgln_if(WASM_TRACE_DEBUG, "select({})", value.value());
        auto rhs = move(configuration.stack().pop().get<NonnullOwnPtr<Value>>());
        auto lhs = move(configuration.stack().pop().get<NonnullOwnPtr<Value>>());
        configuration.stack().push(value.value() != 0 ? move(lhs) : move(rhs));
        return;
    }
    case Instructions::i32_eqz.value():
        UNARY_NUMERIC_OPERATION(i32, 0 ==);
    case Instructions::i32_eq.value():
        BINARY_NUMERIC_OPERATION(i32, ==);
    case Instructions::i32_ne.value():
        BINARY_NUMERIC_OPERATION(i32, !=);
    case Instructions::i32_lts.value():
        BINARY_NUMERIC_OPERATION(i32, <);
    case Instructions::i32_ltu.value():
        BINARY_NUMERIC_OPERATION(u32, <);
    case Instructions::i32_gts.value():
        BINARY_NUMERIC_OPERATION(i32, >);
    case Instructions::i32_gtu.value():
        BINARY_NUMERIC_OPERATION(u32, >);
    case Instructions::i32_les.value():
        BINARY_NUMERIC_OPERATION(i32, <=);
    case Instructions::i32_leu.value():
        BINARY_NUMERIC_OPERATION(u32, <=);
    case Instructions::i32_ges.value():
        BINARY_NUMERIC_OPERATION(i32, >=);
    case Instructions::i32_geu.value():
        BINARY_NUMERIC_OPERATION(u32, >=);
    case Instructions::i64_eqz.value():
        UNARY_NUMERIC_OPERATION(i64, 0ull ==);
    case Instructions::i64_eq.value():
        BINARY_NUMERIC_OPERATION(i64, ==);
    case Instructions::i64_ne.value():
        BINARY_NUMERIC_OPERATION(i64, !=);
    case Instructions::i64_lts.value():
        BINARY_NUMERIC_OPERATION(i64, <);
    case Instructions::i64_ltu.value():
        BINARY_NUMERIC_OPERATION(u64, <);
    case Instructions::i64_gts.value():
        BINARY_NUMERIC_OPERATION(i64, >);
    case Instructions::i64_gtu.value():
        BINARY_NUMERIC_OPERATION(u64, >);
    case Instructions::i64_les.value():
        BINARY_NUMERIC_OPERATION(i64, <=);
    case Instructions::i64_leu.value():
        BINARY_NUMERIC_OPERATION(u64, <=);
    case Instructions::i64_ges.value():
        BINARY_NUMERIC_OPERATION(i64, >=);
    case Instructions::i64_geu.value():
        BINARY_NUMERIC_OPERATION(u64, >=);
    case Instructions::f32_eq.value():
        BINARY_NUMERIC_OPERATION(float, ==);
    case Instructions::f32_ne.value():
        BINARY_NUMERIC_OPERATION(float, !=);
    case Instructions::f32_lt.value():
        BINARY_NUMERIC_OPERATION(float, <);
    case Instructions::f32_gt.value():
        BINARY_NUMERIC_OPERATION(float, >);
    case Instructions::f32_le.value():
        BINARY_NUMERIC_OPERATION(float, <=);
    case Instructions::f32_ge.value():
        BINARY_NUMERIC_OPERATION(float, >=);
    case Instructions::f64_eq.value():
        BINARY_NUMERIC_OPERATION(double, ==);
    case Instructions::f64_ne.value():
        BINARY_NUMERIC_OPERATION(double, !=);
    case Instructions::f64_lt.value():
        BINARY_NUMERIC_OPERATION(double, <);
    case Instructions::f64_gt.value():
        BINARY_NUMERIC_OPERATION(double, >);
    case Instructions::f64_le.value():
        BINARY_NUMERIC_OPERATION(double, <=);
    case Instructions::f64_ge.value():
        BINARY_NUMERIC_OPERATION(double, >);
    case Instructions::i32_clz.value():
    case Instructions::i32_ctz.value():
    case Instructions::i32_popcnt.value():
        goto unimplemented;
    case Instructions::i32_add.value():
        BINARY_NUMERIC_OPERATION(i32, +, i32);
    case Instructions::i32_sub.value():
        BINARY_NUMERIC_OPERATION(i32, -, i32);
    case Instructions::i32_mul.value():
        BINARY_NUMERIC_OPERATION(i32, *, i32);
    case Instructions::i32_divs.value():
        BINARY_NUMERIC_OPERATION(i32, /, i32);
    case Instructions::i32_divu.value():
        BINARY_NUMERIC_OPERATION(u32, /, i32);
    case Instructions::i32_rems.value():
        BINARY_NUMERIC_OPERATION(i32, %, i32);
    case Instructions::i32_remu.value():
        BINARY_NUMERIC_OPERATION(u32, %, i32);
    case Instructions::i32_and.value():
        BINARY_NUMERIC_OPERATION(i32, &, i32);
    case Instructions::i32_or.value():
        BINARY_NUMERIC_OPERATION(i32, |, i32);
    case Instructions::i32_xor.value():
        BINARY_NUMERIC_OPERATION(i32, ^, i32);
    case Instructions::i32_shl.value():
        BINARY_NUMERIC_OPERATION(i32, <<, i32);
    case Instructions::i32_shrs.value():
        BINARY_NUMERIC_OPERATION(i32, >>, i32);
    case Instructions::i32_shru.value():
        BINARY_NUMERIC_OPERATION(u32, >>, i32);
    case Instructions::i32_rotl.value():
    case Instructions::i32_rotr.value():
    case Instructions::i64_clz.value():
    case Instructions::i64_ctz.value():
    case Instructions::i64_popcnt.value():
        goto unimplemented;
    case Instructions::i64_add.value():
        BINARY_NUMERIC_OPERATION(i64, +, i64);
    case Instructions::i64_sub.value():
        BINARY_NUMERIC_OPERATION(i64, -, i64);
    case Instructions::i64_mul.value():
        BINARY_NUMERIC_OPERATION(i64, *, i64);
    case Instructions::i64_divs.value():
        BINARY_NUMERIC_OPERATION(i64, /, i64);
    case Instructions::i64_divu.value():
        BINARY_NUMERIC_OPERATION(u64, /, i64);
    case Instructions::i64_rems.value():
        BINARY_NUMERIC_OPERATION(i64, %, i64);
    case Instructions::i64_remu.value():
        BINARY_NUMERIC_OPERATION(u64, %, i64);
    case Instructions::i64_and.value():
        BINARY_NUMERIC_OPERATION(i64, &, i64);
    case Instructions::i64_or.value():
        BINARY_NUMERIC_OPERATION(i64, |, i64);
    case Instructions::i64_xor.value():
        BINARY_NUMERIC_OPERATION(i64, ^, i64);
    case Instructions::i64_shl.value():
        BINARY_NUMERIC_OPERATION(i64, <<, i64);
    case Instructions::i64_shrs.value():
        BINARY_NUMERIC_OPERATION(i64, >>, i64);
    case Instructions::i64_shru.value():
        BINARY_NUMERIC_OPERATION(u64, >>, i64);
    case Instructions::i64_rotl.value():
    case Instructions::i64_rotr.value():
        goto unimplemented;
    case Instructions::f32_abs.value():
        UNARY_NUMERIC_OPERATION(float, fabsf);
    case Instructions::f32_neg.value():
        UNARY_NUMERIC_OPERATION(float, -);
    case Instructions::f32_ceil.value():
        UNARY_NUMERIC_OPERATION(float, ceilf);
    case Instructions::f32_floor.value():
        UNARY_NUMERIC_OPERATION(float, floorf);
    case Instructions::f32_trunc.value():
        UNARY_NUMERIC_OPERATION(float, truncf);
    case Instructions::f32_nearest.value():
        UNARY_NUMERIC_OPERATION(float, roundf);
    case Instructions::f32_sqrt.value():
        UNARY_NUMERIC_OPERATION(float, sqrtf);
    case Instructions::f32_add.value():
        UNARY_NUMERIC_OPERATION(float, +);
    case Instructions::f32_sub.value():
        UNARY_NUMERIC_OPERATION(float, -);
    case Instructions::f32_mul.value():
        BINARY_NUMERIC_OPERATION(float, *, float);
    case Instructions::f32_div.value():
        BINARY_NUMERIC_OPERATION(float, /, float);
    case Instructions::f32_min.value():
        BINARY_PREFIX_NUMERIC_OPERATION(float, min, float);
    case Instructions::f32_max.value():
        BINARY_PREFIX_NUMERIC_OPERATION(float, max, float);
    case Instructions::f32_copysign.value():
        BINARY_PREFIX_NUMERIC_OPERATION(float, copysignf, float);
    case Instructions::f64_abs.value():
        UNARY_NUMERIC_OPERATION(double, fabs);
    case Instructions::f64_neg.value():
        UNARY_NUMERIC_OPERATION(double, -);
    case Instructions::f64_ceil.value():
        UNARY_NUMERIC_OPERATION(double, ceil);
    case Instructions::f64_floor.value():
        UNARY_NUMERIC_OPERATION(double, floor);
    case Instructions::f64_trunc.value():
        UNARY_NUMERIC_OPERATION(double, trunc);
    case Instructions::f64_nearest.value():
        UNARY_NUMERIC_OPERATION(double, round);
    case Instructions::f64_sqrt.value():
        UNARY_NUMERIC_OPERATION(double, sqrt);
    case Instructions::f64_add.value():
        BINARY_NUMERIC_OPERATION(double, +, double);
    case Instructions::f64_sub.value():
        BINARY_NUMERIC_OPERATION(double, -, double);
    case Instructions::f64_mul.value():
        BINARY_NUMERIC_OPERATION(double, *, double);
    case Instructions::f64_div.value():
        BINARY_NUMERIC_OPERATION(double, /, double);
    case Instructions::f64_min.value():
        BINARY_PREFIX_NUMERIC_OPERATION(double, min, double);
    case Instructions::f64_max.value():
        BINARY_PREFIX_NUMERIC_OPERATION(double, max, double);
    case Instructions::f64_copysign.value():
        BINARY_PREFIX_NUMERIC_OPERATION(double, copysign, double);
    case Instructions::i32_wrap_i64.value():
        UNARY_MAP(i64, i32, i32);
    case Instructions::i32_trunc_sf32.value():
    case Instructions::i32_trunc_uf32.value():
    case Instructions::i32_trunc_sf64.value():
    case Instructions::i32_trunc_uf64.value():
        goto unimplemented;
    case Instructions::i64_extend_si32.value():
        UNARY_MAP(i32, i64, i64);
    case Instructions::i64_extend_ui32.value():
        UNARY_MAP(u32, i64, i64);
    case Instructions::i64_trunc_sf32.value():
    case Instructions::i64_trunc_uf32.value():
    case Instructions::i64_trunc_sf64.value():
    case Instructions::i64_trunc_uf64.value():
        goto unimplemented;
    case Instructions::f32_convert_si32.value():
        UNARY_MAP(i32, float, float);
    case Instructions::f32_convert_ui32.value():
        UNARY_MAP(u32, float, float);
    case Instructions::f32_convert_si64.value():
        UNARY_MAP(i64, float, float);
    case Instructions::f32_convert_ui64.value():
        UNARY_MAP(u32, float, float);
    case Instructions::f32_demote_f64.value():
        UNARY_MAP(double, float, float);
    case Instructions::f64_convert_si32.value():
        UNARY_MAP(i32, double, double);
    case Instructions::f64_convert_ui32.value():
        UNARY_MAP(u32, double, double);
    case Instructions::f64_convert_si64.value():
        UNARY_MAP(i64, double, double);
    case Instructions::f64_convert_ui64.value():
        UNARY_MAP(u64, double, double);
    case Instructions::f64_promote_f32.value():
        UNARY_MAP(float, double, double);
    case Instructions::i32_reinterpret_f32.value():
        UNARY_MAP(float, bit_cast<i32>, i32);
    case Instructions::i64_reinterpret_f64.value():
        UNARY_MAP(double, bit_cast<i64>, i64);
    case Instructions::f32_reinterpret_i32.value():
        UNARY_MAP(i32, bit_cast<float>, float);
    case Instructions::f64_reinterpret_i64.value():
        UNARY_MAP(i64, bit_cast<double>, double);
    case Instructions::i32_trunc_sat_f32_s.value():
    case Instructions::i32_trunc_sat_f32_u.value():
    case Instructions::i32_trunc_sat_f64_s.value():
    case Instructions::i32_trunc_sat_f64_u.value():
    case Instructions::i64_trunc_sat_f32_s.value():
    case Instructions::i64_trunc_sat_f32_u.value():
    case Instructions::i64_trunc_sat_f64_s.value():
    case Instructions::i64_trunc_sat_f64_u.value():
    case Instructions::memory_init.value():
    case Instructions::data_drop.value():
    case Instructions::memory_copy.value():
    case Instructions::memory_fill.value():
    case Instructions::table_init.value():
    case Instructions::elem_drop.value():
    case Instructions::table_copy.value():
    case Instructions::table_grow.value():
    case Instructions::table_size.value():
    case Instructions::table_fill.value():
    default:
    unimplemented:;
        dbgln("Instruction '{}' not implemented", instruction_name(instruction.opcode()));
        return;
    }
}
}