/* * Copyright (c) 2018-2021, Andreas Kling <andreas@ladybird.org> * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include <AK/Format.h> #include <AK/Math.h> #include <AK/StdLibExtras.h> #include <LibGfx/AffineTransform.h> #include <LibGfx/Forward.h> #include <LibGfx/Orientation.h> #include <LibIPC/Forward.h> #include <math.h> namespace Gfx { template<typename T> class Point { public: Point() = default; constexpr Point(T x, T y) : m_x(x) , m_y(y) { } template<typename U> constexpr Point(U x, U y) : m_x(x) , m_y(y) { } template<typename U> explicit Point(Point<U> const& other) : m_x(other.x()) , m_y(other.y()) { } [[nodiscard]] constexpr ALWAYS_INLINE T x() const { return m_x; } [[nodiscard]] constexpr ALWAYS_INLINE T y() const { return m_y; } ALWAYS_INLINE void set_x(T x) { m_x = x; } ALWAYS_INLINE void set_y(T y) { m_y = y; } [[nodiscard]] ALWAYS_INLINE bool is_zero() const { return m_x == 0 && m_y == 0; } void translate_by(T dx, T dy) { m_x += dx; m_y += dy; } ALWAYS_INLINE void translate_by(T dboth) { translate_by(dboth, dboth); } ALWAYS_INLINE void translate_by(Point<T> const& delta) { translate_by(delta.x(), delta.y()); } void scale_by(T dx, T dy) { m_x *= dx; m_y *= dy; } ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); } ALWAYS_INLINE void scale_by(Point<T> const& delta) { scale_by(delta.x(), delta.y()); } void transform_by(AffineTransform const& transform) { *this = transform.map(*this); } [[nodiscard]] Point<T> translated(Point<T> const& delta) const { Point<T> point = *this; point.translate_by(delta); return point; } [[nodiscard]] Point<T> translated(T dx, T dy) const { Point<T> point = *this; point.translate_by(dx, dy); return point; } [[nodiscard]] Point<T> translated(T dboth) const { Point<T> point = *this; point.translate_by(dboth, dboth); return point; } [[nodiscard]] Point<T> scaled(T dboth) const { Point<T> point = *this; point.scale_by(dboth); return point; } [[nodiscard]] Point<T> scaled(Point<T> const& delta) const { Point<T> point = *this; point.scale_by(delta); return point; } [[nodiscard]] Point<T> scaled(T sx, T sy) const { Point<T> point = *this; point.scale_by(sx, sy); return point; } [[nodiscard]] Point<T> transformed(AffineTransform const& transform) const { Point<T> point = *this; point.transform_by(transform); return point; } void constrain(Rect<T> const&); [[nodiscard]] Point<T> constrained(Rect<T> const& rect) const { Point<T> point = *this; point.constrain(rect); return point; } [[nodiscard]] Point<T> moved_left(T amount) const { return { x() - amount, y() }; } [[nodiscard]] Point<T> moved_right(T amount) const { return { x() + amount, y() }; } [[nodiscard]] Point<T> moved_up(T amount) const { return { x(), y() - amount }; } [[nodiscard]] Point<T> moved_down(T amount) const { return { x(), y() + amount }; } template<class U> [[nodiscard]] bool operator==(Point<U> const& other) const { return x() == other.x() && y() == other.y(); } [[nodiscard]] Point<T> operator+(Point<T> const& other) const { return { m_x + other.m_x, m_y + other.m_y }; } Point<T>& operator+=(Point<T> const& other) { m_x += other.m_x; m_y += other.m_y; return *this; } [[nodiscard]] Point<T> operator-() const { return { -m_x, -m_y }; } [[nodiscard]] Point<T> operator-(Point<T> const& other) const { return { m_x - other.m_x, m_y - other.m_y }; } Point<T>& operator-=(Point<T> const& other) { m_x -= other.m_x; m_y -= other.m_y; return *this; } [[nodiscard]] Point<T> operator*(T factor) const { return { m_x * factor, m_y * factor }; } Point<T>& operator*=(T factor) { m_x *= factor; m_y *= factor; return *this; } [[nodiscard]] Point<T> operator/(T factor) const { return { m_x / factor, m_y / factor }; } Point<T>& operator/=(T factor) { m_x /= factor; m_y /= factor; return *this; } [[nodiscard]] T primary_offset_for_orientation(Orientation orientation) const { return orientation == Orientation::Vertical ? y() : x(); } void set_primary_offset_for_orientation(Orientation orientation, T value) { if (orientation == Orientation::Vertical) { set_y(value); } else { set_x(value); } } [[nodiscard]] T secondary_offset_for_orientation(Orientation orientation) const { return orientation == Orientation::Vertical ? x() : y(); } void set_secondary_offset_for_orientation(Orientation orientation, T value) { if (orientation == Orientation::Vertical) { set_x(value); } else { set_y(value); } } [[nodiscard]] T dx_relative_to(Point<T> const& other) const { return x() - other.x(); } [[nodiscard]] T dy_relative_to(Point<T> const& other) const { return y() - other.y(); } // Returns pixels moved from other in either direction [[nodiscard]] T pixels_moved(Point<T> const& other) const { return max(AK::abs(dx_relative_to(other)), AK::abs(dy_relative_to(other))); } [[nodiscard]] float distance_from(Point<T> const& other) const { if (*this == other) return 0; return AK::hypot<float>(m_x - other.m_x, m_y - other.m_y); } [[nodiscard]] Point absolute_relative_distance_to(Point const& other) const { return { AK::abs(dx_relative_to(other)), AK::abs(dy_relative_to(other)) }; } [[nodiscard]] Point end_point_for_aspect_ratio(Point const& previous_end_point, float aspect_ratio) const; template<typename U> requires(!IsSame<T, U>) [[nodiscard]] Point<U> to_type() const { return Point<U>(*this); } template<typename U> [[nodiscard]] Point<U> to_rounded() const { return Point<U>(roundf(x()), roundf(y())); } template<typename U> requires FloatingPoint<T> [[nodiscard]] Point<U> to_ceiled() const { return Point<U>(ceil(x()), ceil(y())); } template<typename U> requires FloatingPoint<T> [[nodiscard]] Point<U> to_floored() const { return Point<U>(AK::floor(x()), AK::floor(y())); } [[nodiscard]] ByteString to_byte_string() const; private: T m_x { 0 }; T m_y { 0 }; }; using IntPoint = Point<int>; using FloatPoint = Point<float>; template<typename T> inline Point<T> linear_interpolate(Point<T> const& p1, Point<T> const& p2, float t) { return Point<T> { p1.x() + t * (p2.x() - p1.x()), p1.y() + t * (p2.y() - p1.y()) }; } template<typename T> inline Point<T> quadratic_interpolate(Point<T> const& p1, Point<T> const& p2, Point<T> const& c1, float t) { return linear_interpolate(linear_interpolate(p1, c1, t), linear_interpolate(c1, p2, t), t); } template<typename T> inline Point<T> cubic_interpolate(Point<T> const& p1, Point<T> const& p2, Point<T> const& c1, Point<T> const& c2, float t) { return linear_interpolate(quadratic_interpolate(p1, c1, c2, t), quadratic_interpolate(c1, c2, p2, t), t); } } namespace AK { template<typename T> struct Formatter<Gfx::Point<T>> : Formatter<FormatString> { ErrorOr<void> format(FormatBuilder& builder, Gfx::Point<T> const& value) { return Formatter<FormatString>::format(builder, "[{},{}]"sv, value.x(), value.y()); } }; } namespace IPC { template<> ErrorOr<void> encode(Encoder&, Gfx::IntPoint const&); template<> ErrorOr<void> encode(Encoder&, Gfx::FloatPoint const&); template<> ErrorOr<Gfx::IntPoint> decode(Decoder&); template<> ErrorOr<Gfx::FloatPoint> decode(Decoder&); } template<typename T> struct AK::Traits<Gfx::Point<T>> : public AK::DefaultTraits<Gfx::Point<T>> { static constexpr bool is_trivial() { return false; } static unsigned hash(Gfx::Point<T> const& point) { return pair_int_hash(AK::Traits<T>::hash(point.x()), AK::Traits<T>::hash(point.y())); } };