/* * Copyright (c) 2020, Matthew Olsson * Copyright (c) 2022-2025, Sam Atkins * Copyright (c) 2024, Tim Ledbetter * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include namespace Web::SVG { void PathInstruction::serialize(StringBuilder& builder) const { switch (type) { case PathInstructionType::Move: builder.append(absolute ? 'M' : 'm'); break; case PathInstructionType::ClosePath: // NB: This is always canonicalized as Z, not z. builder.append('Z'); break; case PathInstructionType::Line: builder.append(absolute ? 'L' : 'l'); break; case PathInstructionType::HorizontalLine: builder.append(absolute ? 'H' : 'h'); break; case PathInstructionType::VerticalLine: builder.append(absolute ? 'V' : 'v'); break; case PathInstructionType::Curve: builder.append(absolute ? 'C' : 'c'); break; case PathInstructionType::SmoothCurve: builder.append(absolute ? 'S' : 's'); break; case PathInstructionType::QuadraticBezierCurve: builder.append(absolute ? 'Q' : 'q'); break; case PathInstructionType::SmoothQuadraticBezierCurve: builder.append(absolute ? 'T' : 't'); break; case PathInstructionType::EllipticalArc: builder.append(absolute ? 'A' : 'a'); break; case PathInstructionType::Invalid: break; } for (auto const& value : data) builder.appendff(" {}", value); } void PathInstruction::dump() const { switch (type) { case PathInstructionType::Move: dbgln("Move (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::ClosePath: dbgln("ClosePath (absolute={})", absolute); break; case PathInstructionType::Line: dbgln("Line (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::HorizontalLine: dbgln("HorizontalLine (absolute={})", absolute); for (size_t i = 0; i < data.size(); ++i) dbgln(" x={}", data[i]); break; case PathInstructionType::VerticalLine: dbgln("VerticalLine (absolute={})", absolute); for (size_t i = 0; i < data.size(); ++i) dbgln(" y={}", data[i]); break; case PathInstructionType::Curve: dbgln("Curve (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 6) dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]); break; case PathInstructionType::SmoothCurve: dbgln("SmoothCurve (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 4) dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]); break; case PathInstructionType::QuadraticBezierCurve: dbgln("QuadraticBezierCurve (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 4) dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]); break; case PathInstructionType::SmoothQuadraticBezierCurve: dbgln("SmoothQuadraticBezierCurve (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 2) dbgln(" x={}, y={}", data[i], data[i + 1]); break; case PathInstructionType::EllipticalArc: dbgln("EllipticalArc (absolute={})", absolute); for (size_t i = 0; i < data.size(); i += 7) dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5], data[i + 6]); break; case PathInstructionType::Invalid: dbgln("Invalid"); break; } } Gfx::Path Path::to_gfx_path() const { Gfx::Path path; Optional previous_control_point; PathInstructionType last_instruction = PathInstructionType::Invalid; for (auto& instruction : m_instructions) { // If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0). auto last_point = path.last_point(); auto& absolute = instruction.absolute; auto& data = instruction.data; if constexpr (PATH_DEBUG) { instruction.dump(); } bool clear_last_control_point = true; switch (instruction.type) { case PathInstructionType::Move: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.move_to(point); } else { path.move_to(point + last_point); } break; } case PathInstructionType::ClosePath: path.close(); break; case PathInstructionType::Line: { Gfx::FloatPoint point = { data[0], data[1] }; if (absolute) { path.line_to(point); } else { path.line_to(point + last_point); } break; } case PathInstructionType::HorizontalLine: { if (absolute) path.line_to(Gfx::FloatPoint { data[0], last_point.y() }); else path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() }); break; } case PathInstructionType::VerticalLine: { if (absolute) path.line_to(Gfx::FloatPoint { last_point.x(), data[0] }); else path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() }); break; } case PathInstructionType::EllipticalArc: { double rx = data[0]; double ry = data[1]; double x_axis_rotation = AK::to_radians(static_cast(data[2])); double large_arc_flag = data[3]; double sweep_flag = data[4]; Gfx::FloatPoint next_point; if (absolute) next_point = { data[5], data[6] }; else next_point = { data[5] + last_point.x(), data[6] + last_point.y() }; path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0); break; } case PathInstructionType::QuadraticBezierCurve: { clear_last_control_point = false; Gfx::FloatPoint through = { data[0], data[1] }; Gfx::FloatPoint point = { data[2], data[3] }; if (absolute) { path.quadratic_bezier_curve_to(through, point); previous_control_point = through; } else { auto control_point = through + last_point; path.quadratic_bezier_curve_to(control_point, point + last_point); previous_control_point = control_point; } break; } case PathInstructionType::SmoothQuadraticBezierCurve: { clear_last_control_point = false; if (!previous_control_point.has_value() || ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) { previous_control_point = last_point; } auto dx_end_control = last_point.dx_relative_to(previous_control_point.value()); auto dy_end_control = last_point.dy_relative_to(previous_control_point.value()); auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control }; Gfx::FloatPoint end_point = { data[0], data[1] }; if (absolute) { path.quadratic_bezier_curve_to(control_point, end_point); } else { path.quadratic_bezier_curve_to(control_point, end_point + last_point); } previous_control_point = control_point; break; } case PathInstructionType::Curve: { clear_last_control_point = false; Gfx::FloatPoint c1 = { data[0], data[1] }; Gfx::FloatPoint c2 = { data[2], data[3] }; Gfx::FloatPoint p2 = { data[4], data[5] }; if (!absolute) { p2 += last_point; c1 += last_point; c2 += last_point; } path.cubic_bezier_curve_to(c1, c2, p2); previous_control_point = c2; break; } case PathInstructionType::SmoothCurve: { clear_last_control_point = false; if (!previous_control_point.has_value() || ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) { previous_control_point = last_point; } // 9.5.2. Reflected control points https://svgwg.org/svg2-draft/paths.html#ReflectedControlPoints // If the current point is (curx, cury) and the final control point of the previous path segment is (oldx2, oldy2), // then the reflected point (i.e., (newx1, newy1), the first control point of the current path segment) is: // (newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury)) auto reflected_previous_control_x = last_point.x() - previous_control_point.value().dx_relative_to(last_point); auto reflected_previous_control_y = last_point.y() - previous_control_point.value().dy_relative_to(last_point); Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y }; Gfx::FloatPoint c2 = { data[0], data[1] }; Gfx::FloatPoint p2 = { data[2], data[3] }; if (!absolute) { p2 += last_point; c2 += last_point; } path.cubic_bezier_curve_to(c1, c2, p2); previous_control_point = c2; break; } case PathInstructionType::Invalid: VERIFY_NOT_REACHED(); } if (clear_last_control_point) { previous_control_point = Gfx::FloatPoint {}; } last_instruction = instruction.type; } return path; } String Path::serialize() const { StringBuilder builder; bool first = true; for (auto const& instruction : m_instructions) { if (first) { first = false; } else { builder.append(' '); } instruction.serialize(builder); } return builder.to_string_without_validation(); } }