/* * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org> * Copyright (c) 2022, kleines Filmröllchen <filmroellchen@serenityos.org> * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include <AK/Concepts.h> #include <AK/FixedArray.h> #include <AK/NonnullOwnPtr.h> #include <AK/OwnPtr.h> #include <LibAudio/Queue.h> #include <LibAudio/UserSampleQueue.h> #include <LibCore/EventLoop.h> #include <LibCore/Object.h> #include <LibIPC/ConnectionToServer.h> #include <LibThreading/Mutex.h> #include <LibThreading/Thread.h> #include <Userland/Services/AudioServer/AudioClientEndpoint.h> #include <Userland/Services/AudioServer/AudioServerEndpoint.h> namespace Audio { class ConnectionToServer final : public IPC::ConnectionToServer<AudioClientEndpoint, AudioServerEndpoint> , public AudioClientEndpoint { IPC_CLIENT_CONNECTION(ConnectionToServer, "/tmp/session/%sid/portal/audio"sv) public: virtual ~ConnectionToServer() override; // Both of these APIs are for convenience and when you don't care about real-time behavior. // They will not work properly in conjunction with realtime_enqueue. // If you don't refill the buffer in time with this API, the last shared buffer write is zero-padded to play all of the samples. template<ArrayLike<Sample> Samples> ErrorOr<void> async_enqueue(Samples&& samples) { return async_enqueue(TRY(FixedArray<Sample>::create(samples.span()))); } ErrorOr<void> async_enqueue(FixedArray<Sample>&& samples); void clear_client_buffer(); // Returns immediately with the appropriate status if the buffer is full; use in conjunction with remaining_buffers to get low latency. ErrorOr<void, AudioQueue::QueueStatus> realtime_enqueue(Array<Sample, AUDIO_BUFFER_SIZE> samples); ErrorOr<void> blocking_realtime_enqueue(Array<Sample, AUDIO_BUFFER_SIZE> samples, Function<void()> wait_function); // This information can be deducted from the shared audio buffer. unsigned total_played_samples() const; // How many samples remain in m_enqueued_samples. unsigned remaining_samples(); // How many buffers (i.e. short sample arrays) the server hasn't played yet. // Non-realtime code needn't worry about this. size_t remaining_buffers() const; virtual void die() override; Function<void(bool muted)> on_main_mix_muted_state_change; Function<void(double volume)> on_main_mix_volume_change; Function<void(double volume)> on_client_volume_change; private: ConnectionToServer(NonnullOwnPtr<Core::LocalSocket>); virtual void main_mix_muted_state_changed(bool) override; virtual void main_mix_volume_changed(double) override; virtual void client_volume_changed(double) override; // We use this to perform the audio enqueuing on the background thread's event loop virtual void custom_event(Core::CustomEvent&) override; // FIXME: This should be called every time the sample rate changes, but we just cautiously call it on every non-realtime enqueue. void update_good_sleep_time(); // Shared audio buffer: both server and client constantly read and write to/from this. // This needn't be mutex protected: it's internally multi-threading aware. OwnPtr<AudioQueue> m_buffer; // The queue of non-realtime audio provided by the user. NonnullOwnPtr<UserSampleQueue> m_user_queue; NonnullRefPtr<Threading::Thread> m_background_audio_enqueuer; Core::EventLoop* m_enqueuer_loop { nullptr }; Threading::Mutex m_enqueuer_loop_destruction; // A good amount of time to sleep when the queue is full. // (Only used for non-realtime enqueues) timespec m_good_sleep_time {}; }; }