/* * Copyright (c) 2021, Andreas Kling <kling@serenityos.org> * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include <AK/OwnPtr.h> #include <AK/SinglyLinkedList.h> #include <LibJS/Bytecode/BasicBlock.h> #include <LibJS/Bytecode/CodeGenerationError.h> #include <LibJS/Bytecode/Executable.h> #include <LibJS/Bytecode/IdentifierTable.h> #include <LibJS/Bytecode/Label.h> #include <LibJS/Bytecode/Op.h> #include <LibJS/Bytecode/Register.h> #include <LibJS/Bytecode/StringTable.h> #include <LibJS/Forward.h> #include <LibJS/Runtime/FunctionKind.h> namespace JS::Bytecode { class Generator { public: enum class SurroundingScopeKind { Global, Function, Block, }; static CodeGenerationErrorOr<NonnullOwnPtr<Executable>> generate(ASTNode const&, FunctionKind = FunctionKind::Normal); Register allocate_register(); void ensure_enough_space(size_t size) { // Make sure there's always enough space for a single jump at the end. if (!m_current_basic_block->can_grow(size + sizeof(Op::Jump))) { auto& new_block = make_block(); emit<Op::Jump>().set_targets( Label { new_block }, {}); switch_to_basic_block(new_block); } } template<typename OpType, typename... Args> OpType& emit(Args&&... args) { VERIFY(!is_current_block_terminated()); // If the block doesn't have enough space, switch to another block if constexpr (!OpType::IsTerminator) ensure_enough_space(sizeof(OpType)); void* slot = next_slot(); grow(sizeof(OpType)); new (slot) OpType(forward<Args>(args)...); if constexpr (OpType::IsTerminator) m_current_basic_block->terminate({}, static_cast<Instruction const*>(slot)); return *static_cast<OpType*>(slot); } template<typename OpType, typename... Args> OpType& emit_with_extra_register_slots(size_t extra_register_slots, Args&&... args) { VERIFY(!is_current_block_terminated()); size_t size_to_allocate = round_up_to_power_of_two(sizeof(OpType) + extra_register_slots * sizeof(Register), alignof(void*)); // If the block doesn't have enough space, switch to another block if constexpr (!OpType::IsTerminator) ensure_enough_space(size_to_allocate); void* slot = next_slot(); grow(size_to_allocate); new (slot) OpType(forward<Args>(args)...); if constexpr (OpType::IsTerminator) m_current_basic_block->terminate({}, static_cast<Instruction const*>(slot)); return *static_cast<OpType*>(slot); } CodeGenerationErrorOr<void> emit_load_from_reference(JS::ASTNode const&); CodeGenerationErrorOr<void> emit_store_to_reference(JS::ASTNode const&); CodeGenerationErrorOr<void> emit_delete_reference(JS::ASTNode const&); void begin_continuable_scope(Label continue_target, Vector<DeprecatedFlyString> const& language_label_set); void end_continuable_scope(); void begin_breakable_scope(Label breakable_target, Vector<DeprecatedFlyString> const& language_label_set); void end_breakable_scope(); [[nodiscard]] Label nearest_continuable_scope() const; [[nodiscard]] Label nearest_breakable_scope() const; void switch_to_basic_block(BasicBlock& block) { m_current_basic_block = █ } [[nodiscard]] BasicBlock& current_block() { return *m_current_basic_block; } BasicBlock& make_block(DeprecatedString name = {}) { if (name.is_empty()) name = DeprecatedString::number(m_next_block++); m_root_basic_blocks.append(BasicBlock::create(name)); return *m_root_basic_blocks.last(); } bool is_current_block_terminated() const { return m_current_basic_block->is_terminated(); } StringTableIndex intern_string(DeprecatedString string) { return m_string_table->insert(move(string)); } IdentifierTableIndex intern_identifier(DeprecatedFlyString string) { return m_identifier_table->insert(move(string)); } bool is_in_generator_or_async_function() const { return m_enclosing_function_kind == FunctionKind::Async || m_enclosing_function_kind == FunctionKind::Generator; } bool is_in_generator_function() const { return m_enclosing_function_kind == FunctionKind::Generator; } bool is_in_async_function() const { return m_enclosing_function_kind == FunctionKind::Async; } enum class BindingMode { Lexical, Var, Global, }; struct LexicalScope { SurroundingScopeKind kind; BindingMode mode; HashTable<IdentifierTableIndex> known_bindings; }; void register_binding(IdentifierTableIndex identifier, BindingMode mode = BindingMode::Lexical) { m_variable_scopes.last_matching([&](auto& x) { return x.mode == BindingMode::Global || x.mode == mode; })->known_bindings.set(identifier); } bool has_binding(IdentifierTableIndex identifier, Optional<BindingMode> const& specific_binding_mode = {}) const { for (auto index = m_variable_scopes.size(); index > 0; --index) { auto& scope = m_variable_scopes[index - 1]; if (scope.mode != BindingMode::Global && specific_binding_mode.value_or(scope.mode) != scope.mode) continue; if (scope.known_bindings.contains(identifier)) return true; } return false; } bool has_binding_in_current_scope(IdentifierTableIndex identifier) const { if (m_variable_scopes.is_empty()) return false; return m_variable_scopes.last().known_bindings.contains(identifier); } void begin_variable_scope(BindingMode mode = BindingMode::Lexical, SurroundingScopeKind kind = SurroundingScopeKind::Block); void end_variable_scope(); enum class BlockBoundaryType { Break, Continue, Unwind, ReturnToFinally, LeaveLexicalEnvironment, LeaveVariableEnvironment, }; template<typename OpType> void perform_needed_unwinds() requires(OpType::IsTerminator && !IsSame<OpType, Op::Jump>) { for (size_t i = m_boundaries.size(); i > 0; --i) { auto boundary = m_boundaries[i - 1]; using enum BlockBoundaryType; switch (boundary) { case Unwind: if constexpr (IsSame<OpType, Bytecode::Op::Throw>) return; emit<Bytecode::Op::LeaveUnwindContext>(); break; case LeaveLexicalEnvironment: emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Lexical); break; case LeaveVariableEnvironment: emit<Bytecode::Op::LeaveEnvironment>(Bytecode::Op::EnvironmentMode::Var); break; case Break: case Continue: break; case ReturnToFinally: return; }; } } void generate_break(); void generate_break(DeprecatedFlyString const& break_label); void generate_continue(); void generate_continue(DeprecatedFlyString const& continue_label); void start_boundary(BlockBoundaryType type) { m_boundaries.append(type); } void end_boundary(BlockBoundaryType type) { VERIFY(m_boundaries.last() == type); m_boundaries.take_last(); } private: Generator(); ~Generator() = default; void grow(size_t); void* next_slot(); struct LabelableScope { Label bytecode_target; Vector<DeprecatedFlyString> language_label_set; }; BasicBlock* m_current_basic_block { nullptr }; Vector<NonnullOwnPtr<BasicBlock>> m_root_basic_blocks; NonnullOwnPtr<StringTable> m_string_table; NonnullOwnPtr<IdentifierTable> m_identifier_table; u32 m_next_register { 2 }; u32 m_next_block { 1 }; FunctionKind m_enclosing_function_kind { FunctionKind::Normal }; Vector<LabelableScope> m_continuable_scopes; Vector<LabelableScope> m_breakable_scopes; Vector<LexicalScope> m_variable_scopes; Vector<BlockBoundaryType> m_boundaries; }; }