/* * Copyright (c) 2021-2024, Andreas Kling <andreas@ladybird.org> * * SPDX-License-Identifier: BSD-2-Clause */ #include <AK/QuickSort.h> #include <AK/TemporaryChange.h> #include <LibJS/AST.h> #include <LibJS/Bytecode/BasicBlock.h> #include <LibJS/Bytecode/Generator.h> #include <LibJS/Bytecode/Instruction.h> #include <LibJS/Bytecode/Op.h> #include <LibJS/Bytecode/Register.h> #include <LibJS/Runtime/ECMAScriptFunctionObject.h> #include <LibJS/Runtime/VM.h> namespace JS::Bytecode { Generator::Generator(VM& vm, GC::Ptr<ECMAScriptFunctionObject const> function, MustPropagateCompletion must_propagate_completion) : m_vm(vm) , m_string_table(make<StringTable>()) , m_identifier_table(make<IdentifierTable>()) , m_regex_table(make<RegexTable>()) , m_constants(vm.heap()) , m_accumulator(*this, Operand(Register::accumulator())) , m_this_value(*this, Operand(Register::this_value())) , m_must_propagate_completion(must_propagate_completion == MustPropagateCompletion::Yes) , m_function(function) { } CodeGenerationErrorOr<void> Generator::emit_function_declaration_instantiation(ECMAScriptFunctionObject const& function) { if (function.m_has_parameter_expressions) { emit<Op::CreateLexicalEnvironment>(); } for (auto const& parameter_name : function.m_parameter_names) { if (parameter_name.value == ECMAScriptFunctionObject::ParameterIsLocal::No) { auto id = intern_identifier(parameter_name.key); emit<Op::CreateVariable>(id, Op::EnvironmentMode::Lexical, false); if (function.m_has_duplicates) { emit<Op::InitializeLexicalBinding>(id, add_constant(js_undefined())); } } } if (function.m_arguments_object_needed) { Optional<Operand> dst; auto local_var_index = function.m_local_variables_names.find_first_index("arguments"sv); if (local_var_index.has_value()) dst = local(local_var_index.value()); if (function.m_strict || !function.has_simple_parameter_list()) { emit<Op::CreateArguments>(dst, Op::CreateArguments::Kind::Unmapped, function.m_strict); } else { emit<Op::CreateArguments>(dst, Op::CreateArguments::Kind::Mapped, function.m_strict); } } auto const& formal_parameters = function.formal_parameters(); for (u32 param_index = 0; param_index < formal_parameters.size(); ++param_index) { auto const& parameter = formal_parameters[param_index]; if (parameter.is_rest) { auto argument_reg = allocate_register(); emit<Op::CreateRestParams>(argument_reg.operand(), param_index); emit<Op::SetArgument>(param_index, argument_reg.operand()); } else if (parameter.default_value) { auto& if_undefined_block = make_block(); auto& if_not_undefined_block = make_block(); auto argument_reg = allocate_register(); emit<Op::GetArgument>(argument_reg.operand(), param_index); emit<Op::JumpUndefined>( argument_reg.operand(), Label { if_undefined_block }, Label { if_not_undefined_block }); switch_to_basic_block(if_undefined_block); auto operand = TRY(parameter.default_value->generate_bytecode(*this)); emit<Op::SetArgument>(param_index, *operand); emit<Op::Jump>(Label { if_not_undefined_block }); switch_to_basic_block(if_not_undefined_block); } if (auto const* identifier = parameter.binding.get_pointer<NonnullRefPtr<Identifier const>>(); identifier) { if ((*identifier)->is_local()) { auto local_variable_index = (*identifier)->local_variable_index(); emit<Op::GetArgument>(local(local_variable_index), param_index); set_local_initialized((*identifier)->local_variable_index()); } else { auto id = intern_identifier((*identifier)->string()); auto argument_reg = allocate_register(); emit<Op::GetArgument>(argument_reg.operand(), param_index); if (function.m_has_duplicates) { emit<Op::SetLexicalBinding>(id, argument_reg.operand()); } else { emit<Op::InitializeLexicalBinding>(id, argument_reg.operand()); } } } else if (auto const* binding_pattern = parameter.binding.get_pointer<NonnullRefPtr<BindingPattern const>>(); binding_pattern) { auto input_operand = allocate_register(); emit<Op::GetArgument>(input_operand.operand(), param_index); auto init_mode = function.m_has_duplicates ? Op::BindingInitializationMode::Set : Bytecode::Op::BindingInitializationMode::Initialize; TRY((*binding_pattern)->generate_bytecode(*this, init_mode, input_operand, false)); } } ScopeNode const* scope_body = nullptr; if (is<ScopeNode>(*function.m_ecmascript_code)) scope_body = static_cast<ScopeNode const*>(function.m_ecmascript_code.ptr()); if (!function.m_has_parameter_expressions) { if (scope_body) { for (auto const& variable_to_initialize : function.m_var_names_to_initialize_binding) { auto const& id = variable_to_initialize.identifier; if (id.is_local()) { emit<Op::Mov>(local(id.local_variable_index()), add_constant(js_undefined())); } else { auto intern_id = intern_identifier(id.string()); emit<Op::CreateVariable>(intern_id, Op::EnvironmentMode::Var, false); emit<Op::InitializeVariableBinding>(intern_id, add_constant(js_undefined())); } } } } else { emit<Op::CreateVariableEnvironment>(function.m_var_environment_bindings_count); if (scope_body) { for (auto const& variable_to_initialize : function.m_var_names_to_initialize_binding) { auto const& id = variable_to_initialize.identifier; auto initial_value = allocate_register(); if (!variable_to_initialize.parameter_binding || variable_to_initialize.function_name) { emit<Op::Mov>(initial_value, add_constant(js_undefined())); } else { if (id.is_local()) { emit<Op::Mov>(initial_value, local(id.local_variable_index())); } else { emit<Op::GetBinding>(initial_value, intern_identifier(id.string())); } } if (id.is_local()) { emit<Op::Mov>(local(id.local_variable_index()), initial_value); } else { auto intern_id = intern_identifier(id.string()); emit<Op::CreateVariable>(intern_id, Op::EnvironmentMode::Var, false); emit<Op::InitializeVariableBinding>(intern_id, initial_value); } } } } if (!function.m_strict && scope_body) { for (auto const& function_name : function.m_function_names_to_initialize_binding) { auto intern_id = intern_identifier(function_name); emit<Op::CreateVariable>(intern_id, Op::EnvironmentMode::Var, false); emit<Op::InitializeVariableBinding>(intern_id, add_constant(js_undefined())); } } if (!function.m_strict) { bool can_elide_declarative_environment = !function.m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_non_local_lexical_declarations()); if (!can_elide_declarative_environment) { emit<Op::CreateLexicalEnvironment>(function.m_lex_environment_bindings_count); } } if (scope_body) { MUST(scope_body->for_each_lexically_scoped_declaration([&](Declaration const& declaration) { MUST(declaration.for_each_bound_identifier([&](auto const& id) { if (id.is_local()) { return; } emit<Op::CreateVariable>(intern_identifier(id.string()), Op::EnvironmentMode::Lexical, declaration.is_constant_declaration(), false, declaration.is_constant_declaration()); })); })); } for (auto const& declaration : function.m_functions_to_initialize) { auto function = allocate_register(); emit<Op::NewFunction>(function, declaration, OptionalNone {}); if (declaration.name_identifier()->is_local()) { emit<Op::Mov>(local(declaration.name_identifier()->local_variable_index()), function); } else { emit<Op::SetVariableBinding>(intern_identifier(declaration.name()), function); } } return {}; } CodeGenerationErrorOr<GC::Ref<Executable>> Generator::compile(VM& vm, ASTNode const& node, FunctionKind enclosing_function_kind, GC::Ptr<ECMAScriptFunctionObject const> function, MustPropagateCompletion must_propagate_completion, Vector<DeprecatedFlyString> local_variable_names) { Generator generator(vm, function, must_propagate_completion); generator.switch_to_basic_block(generator.make_block()); SourceLocationScope scope(generator, node); generator.m_enclosing_function_kind = enclosing_function_kind; if (generator.is_in_async_function() && !generator.is_in_generator_function()) { // Immediately yield with no value. auto& start_block = generator.make_block(); generator.emit<Bytecode::Op::Yield>(Label { start_block }, generator.add_constant(js_undefined())); generator.switch_to_basic_block(start_block); // NOTE: This doesn't have to handle received throw/return completions, as GeneratorObject::resume_abrupt // will not enter the generator from the SuspendedStart state and immediately completes the generator. } if (function) TRY(generator.emit_function_declaration_instantiation(*function)); if (generator.is_in_generator_function()) { // Immediately yield with no value. auto& start_block = generator.make_block(); generator.emit<Bytecode::Op::Yield>(Label { start_block }, generator.add_constant(js_undefined())); generator.switch_to_basic_block(start_block); // NOTE: This doesn't have to handle received throw/return completions, as GeneratorObject::resume_abrupt // will not enter the generator from the SuspendedStart state and immediately completes the generator. } auto last_value = TRY(node.generate_bytecode(generator)); if (!generator.current_block().is_terminated() && last_value.has_value()) { generator.emit<Bytecode::Op::End>(last_value.value()); } if (generator.is_in_generator_or_async_function()) { // Terminate all unterminated blocks with yield return for (auto& block : generator.m_root_basic_blocks) { if (block->is_terminated()) continue; generator.switch_to_basic_block(*block); generator.emit_return<Bytecode::Op::Yield>(generator.add_constant(js_undefined())); } } bool is_strict_mode = false; if (is<Program>(node)) is_strict_mode = static_cast<Program const&>(node).is_strict_mode(); else if (is<FunctionBody>(node)) is_strict_mode = static_cast<FunctionBody const&>(node).in_strict_mode(); else if (is<FunctionDeclaration>(node)) is_strict_mode = static_cast<FunctionDeclaration const&>(node).is_strict_mode(); size_t size_needed = 0; for (auto& block : generator.m_root_basic_blocks) { size_needed += block->size(); } Vector<u8> bytecode; bytecode.ensure_capacity(size_needed); Vector<size_t> basic_block_start_offsets; basic_block_start_offsets.ensure_capacity(generator.m_root_basic_blocks.size()); HashMap<BasicBlock const*, size_t> block_offsets; Vector<size_t> label_offsets; struct UnlinkedExceptionHandlers { size_t start_offset; size_t end_offset; BasicBlock const* handler; BasicBlock const* finalizer; }; Vector<UnlinkedExceptionHandlers> unlinked_exception_handlers; HashMap<size_t, SourceRecord> source_map; Optional<ScopedOperand> undefined_constant; for (auto& block : generator.m_root_basic_blocks) { if (!block->is_terminated()) { // NOTE: We must ensure that the "undefined" constant, which will be used by the not yet // emitted End instruction, is taken into account while shifting local operands by the // number of constants. undefined_constant = generator.add_constant(js_undefined()); break; } } auto number_of_registers = generator.m_next_register; auto number_of_constants = generator.m_constants.size(); // Pass: Rewrite the bytecode to use the correct register and constant indices. for (auto& block : generator.m_root_basic_blocks) { Bytecode::InstructionStreamIterator it(block->instruction_stream()); while (!it.at_end()) { auto& instruction = const_cast<Instruction&>(*it); instruction.visit_operands([number_of_registers, number_of_constants](Operand& operand) { switch (operand.type()) { case Operand::Type::Register: break; case Operand::Type::Local: operand.offset_index_by(number_of_registers + number_of_constants); break; case Operand::Type::Constant: operand.offset_index_by(number_of_registers); break; default: VERIFY_NOT_REACHED(); } }); ++it; } } // Also rewrite the `undefined` constant if we have one for inserting End. if (undefined_constant.has_value()) undefined_constant.value().operand().offset_index_by(number_of_registers); for (auto& block : generator.m_root_basic_blocks) { basic_block_start_offsets.append(bytecode.size()); if (block->handler() || block->finalizer()) { unlinked_exception_handlers.append({ .start_offset = bytecode.size(), .end_offset = 0, .handler = block->handler(), .finalizer = block->finalizer(), }); } block_offsets.set(block.ptr(), bytecode.size()); for (auto& [offset, source_record] : block->source_map()) { source_map.set(bytecode.size() + offset, source_record); } Bytecode::InstructionStreamIterator it(block->instruction_stream()); while (!it.at_end()) { auto& instruction = const_cast<Instruction&>(*it); if (instruction.type() == Instruction::Type::Jump) { auto& jump = static_cast<Bytecode::Op::Jump&>(instruction); // OPTIMIZATION: Don't emit jumps that just jump to the next block. if (jump.target().basic_block_index() == block->index() + 1) { if (basic_block_start_offsets.last() == bytecode.size()) { // This block is empty, just skip it. basic_block_start_offsets.take_last(); } ++it; continue; } // OPTIMIZATION: For jumps to a return-or-end-only block, we can emit a `Return` or `End` directly instead. auto& target_block = *generator.m_root_basic_blocks[jump.target().basic_block_index()]; if (target_block.is_terminated()) { auto target_instruction_iterator = InstructionStreamIterator { target_block.instruction_stream() }; auto& target_instruction = *target_instruction_iterator; if (target_instruction.type() == Instruction::Type::Return) { auto& return_instruction = static_cast<Bytecode::Op::Return const&>(target_instruction); Op::Return return_op(return_instruction.value()); bytecode.append(reinterpret_cast<u8 const*>(&return_op), return_op.length()); ++it; continue; } if (target_instruction.type() == Instruction::Type::End) { auto& return_instruction = static_cast<Bytecode::Op::End const&>(target_instruction); Op::End end_op(return_instruction.value()); bytecode.append(reinterpret_cast<u8 const*>(&end_op), end_op.length()); ++it; continue; } } } // OPTIMIZATION: For `JumpIf` where one of the targets is the very next block, // we can emit a `JumpTrue` or `JumpFalse` (to the other block) instead. if (instruction.type() == Instruction::Type::JumpIf) { auto& jump = static_cast<Bytecode::Op::JumpIf&>(instruction); if (jump.true_target().basic_block_index() == block->index() + 1) { Op::JumpFalse jump_false(jump.condition(), Label { jump.false_target() }); auto& label = jump_false.target(); size_t label_offset = bytecode.size() + (bit_cast<FlatPtr>(&label) - bit_cast<FlatPtr>(&jump_false)); label_offsets.append(label_offset); bytecode.append(reinterpret_cast<u8 const*>(&jump_false), jump_false.length()); ++it; continue; } if (jump.false_target().basic_block_index() == block->index() + 1) { Op::JumpTrue jump_true(jump.condition(), Label { jump.true_target() }); auto& label = jump_true.target(); size_t label_offset = bytecode.size() + (bit_cast<FlatPtr>(&label) - bit_cast<FlatPtr>(&jump_true)); label_offsets.append(label_offset); bytecode.append(reinterpret_cast<u8 const*>(&jump_true), jump_true.length()); ++it; continue; } } instruction.visit_labels([&](Label& label) { size_t label_offset = bytecode.size() + (bit_cast<FlatPtr>(&label) - bit_cast<FlatPtr>(&instruction)); label_offsets.append(label_offset); }); bytecode.append(reinterpret_cast<u8 const*>(&instruction), instruction.length()); ++it; } if (!block->is_terminated()) { Op::End end(*undefined_constant); bytecode.append(reinterpret_cast<u8 const*>(&end), end.length()); } if (block->handler() || block->finalizer()) { unlinked_exception_handlers.last().end_offset = bytecode.size(); } } for (auto label_offset : label_offsets) { auto& label = *reinterpret_cast<Label*>(bytecode.data() + label_offset); auto* block = generator.m_root_basic_blocks[label.basic_block_index()].ptr(); label.set_address(block_offsets.get(block).value()); } auto executable = vm.heap().allocate<Executable>( move(bytecode), move(generator.m_identifier_table), move(generator.m_string_table), move(generator.m_regex_table), move(generator.m_constants), node.source_code(), generator.m_next_property_lookup_cache, generator.m_next_global_variable_cache, generator.m_next_register, is_strict_mode); Vector<Executable::ExceptionHandlers> linked_exception_handlers; for (auto& unlinked_handler : unlinked_exception_handlers) { auto start_offset = unlinked_handler.start_offset; auto end_offset = unlinked_handler.end_offset; auto handler_offset = unlinked_handler.handler ? block_offsets.get(unlinked_handler.handler).value() : Optional<size_t> {}; auto finalizer_offset = unlinked_handler.finalizer ? block_offsets.get(unlinked_handler.finalizer).value() : Optional<size_t> {}; linked_exception_handlers.append({ start_offset, end_offset, handler_offset, finalizer_offset }); } quick_sort(linked_exception_handlers, [](auto const& a, auto const& b) { return a.start_offset < b.start_offset; }); executable->exception_handlers = move(linked_exception_handlers); executable->basic_block_start_offsets = move(basic_block_start_offsets); executable->source_map = move(source_map); executable->local_variable_names = move(local_variable_names); executable->local_index_base = number_of_registers + number_of_constants; executable->length_identifier = generator.m_length_identifier; generator.m_finished = true; return executable; } CodeGenerationErrorOr<GC::Ref<Executable>> Generator::generate_from_ast_node(VM& vm, ASTNode const& node, FunctionKind enclosing_function_kind) { Vector<DeprecatedFlyString> local_variable_names; if (is<ScopeNode>(node)) local_variable_names = static_cast<ScopeNode const&>(node).local_variables_names(); return compile(vm, node, enclosing_function_kind, {}, MustPropagateCompletion::Yes, move(local_variable_names)); } CodeGenerationErrorOr<GC::Ref<Executable>> Generator::generate_from_function(VM& vm, ECMAScriptFunctionObject const& function) { return compile(vm, function.ecmascript_code(), function.kind(), &function, MustPropagateCompletion::No, function.local_variables_names()); } void Generator::grow(size_t additional_size) { VERIFY(m_current_basic_block); m_current_basic_block->grow(additional_size); } ScopedOperand Generator::allocate_register() { if (!m_free_registers.is_empty()) { return ScopedOperand { *this, Operand { m_free_registers.take_last() } }; } VERIFY(m_next_register != NumericLimits<u32>::max()); return ScopedOperand { *this, Operand { Register { m_next_register++ } } }; } void Generator::free_register(Register reg) { m_free_registers.append(reg); } ScopedOperand Generator::local(u32 local_index) { return ScopedOperand { *this, Operand { Operand::Type::Local, static_cast<u32>(local_index) } }; } Generator::SourceLocationScope::SourceLocationScope(Generator& generator, ASTNode const& node) : m_generator(generator) , m_previous_node(m_generator.m_current_ast_node) { m_generator.m_current_ast_node = &node; } Generator::SourceLocationScope::~SourceLocationScope() { m_generator.m_current_ast_node = m_previous_node; } Generator::UnwindContext::UnwindContext(Generator& generator, Optional<Label> finalizer) : m_generator(generator) , m_finalizer(finalizer) , m_previous_context(m_generator.m_current_unwind_context) { m_generator.m_current_unwind_context = this; } Generator::UnwindContext::~UnwindContext() { VERIFY(m_generator.m_current_unwind_context == this); m_generator.m_current_unwind_context = m_previous_context; } Label Generator::nearest_continuable_scope() const { return m_continuable_scopes.last().bytecode_target; } bool Generator::emit_block_declaration_instantiation(ScopeNode const& scope_node) { bool needs_block_declaration_instantiation = false; MUST(scope_node.for_each_lexically_scoped_declaration([&](Declaration const& declaration) { if (declaration.is_function_declaration()) { needs_block_declaration_instantiation = true; return; } MUST(declaration.for_each_bound_identifier([&](auto const& id) { if (!id.is_local()) needs_block_declaration_instantiation = true; })); })); if (!needs_block_declaration_instantiation) return false; // FIXME: Generate the actual bytecode for block declaration instantiation // and get rid of the BlockDeclarationInstantiation instruction. start_boundary(BlockBoundaryType::LeaveLexicalEnvironment); emit<Bytecode::Op::BlockDeclarationInstantiation>(scope_node); return true; } void Generator::begin_variable_scope() { start_boundary(BlockBoundaryType::LeaveLexicalEnvironment); emit<Bytecode::Op::CreateLexicalEnvironment>(); } void Generator::end_variable_scope() { end_boundary(BlockBoundaryType::LeaveLexicalEnvironment); if (!m_current_basic_block->is_terminated()) { emit<Bytecode::Op::LeaveLexicalEnvironment>(); } } void Generator::begin_continuable_scope(Label continue_target, Vector<DeprecatedFlyString> const& language_label_set) { m_continuable_scopes.append({ continue_target, language_label_set }); start_boundary(BlockBoundaryType::Continue); } void Generator::end_continuable_scope() { m_continuable_scopes.take_last(); end_boundary(BlockBoundaryType::Continue); } Label Generator::nearest_breakable_scope() const { return m_breakable_scopes.last().bytecode_target; } void Generator::begin_breakable_scope(Label breakable_target, Vector<DeprecatedFlyString> const& language_label_set) { m_breakable_scopes.append({ breakable_target, language_label_set }); start_boundary(BlockBoundaryType::Break); } void Generator::end_breakable_scope() { m_breakable_scopes.take_last(); end_boundary(BlockBoundaryType::Break); } CodeGenerationErrorOr<Generator::ReferenceOperands> Generator::emit_super_reference(MemberExpression const& expression) { VERIFY(is<SuperExpression>(expression.object())); // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation // 1. Let env be GetThisEnvironment(). // 2. Let actualThis be ? env.GetThisBinding(). auto actual_this = get_this(); Optional<ScopedOperand> computed_property_value; if (expression.is_computed()) { // SuperProperty : super [ Expression ] // 3. Let propertyNameReference be ? Evaluation of Expression. // 4. Let propertyNameValue be ? GetValue(propertyNameReference). computed_property_value = TRY(expression.property().generate_bytecode(*this)).value(); } // 5/7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict). // https://tc39.es/ecma262/#sec-makesuperpropertyreference // 1. Let env be GetThisEnvironment(). // 2. Assert: env.HasSuperBinding() is true. // 3. Let baseValue be ? env.GetSuperBase(). auto base_value = allocate_register(); emit<Bytecode::Op::ResolveSuperBase>(base_value); // 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }. return ReferenceOperands { .base = base_value, .referenced_name = computed_property_value, .this_value = actual_this, }; } CodeGenerationErrorOr<Generator::ReferenceOperands> Generator::emit_load_from_reference(JS::ASTNode const& node, Optional<ScopedOperand> preferred_dst) { if (is<Identifier>(node)) { auto& identifier = static_cast<Identifier const&>(node); auto loaded_value = TRY(identifier.generate_bytecode(*this, preferred_dst)).value(); return ReferenceOperands { .loaded_value = loaded_value, }; } if (!is<MemberExpression>(node)) { return CodeGenerationError { &node, "Unimplemented/invalid node used as a reference"sv }; } auto& expression = static_cast<MemberExpression const&>(node); // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation if (is<SuperExpression>(expression.object())) { auto super_reference = TRY(emit_super_reference(expression)); auto dst = preferred_dst.has_value() ? preferred_dst.value() : allocate_register(); if (super_reference.referenced_name.has_value()) { // 5. Let propertyKey be ? ToPropertyKey(propertyNameValue). // FIXME: This does ToPropertyKey out of order, which is observable by Symbol.toPrimitive! emit<Bytecode::Op::GetByValueWithThis>(dst, *super_reference.base, *super_reference.referenced_name, *super_reference.this_value); } else { // 3. Let propertyKey be StringValue of IdentifierName. auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string()); emit_get_by_id_with_this(dst, *super_reference.base, identifier_table_ref, *super_reference.this_value); } super_reference.loaded_value = dst; return super_reference; } auto base = TRY(expression.object().generate_bytecode(*this)).value(); auto base_identifier = intern_identifier_for_expression(expression.object()); if (expression.is_computed()) { auto property = TRY(expression.property().generate_bytecode(*this)).value(); auto saved_property = allocate_register(); emit<Bytecode::Op::Mov>(saved_property, property); auto dst = preferred_dst.has_value() ? preferred_dst.value() : allocate_register(); emit<Bytecode::Op::GetByValue>(dst, base, property, move(base_identifier)); return ReferenceOperands { .base = base, .referenced_name = saved_property, .this_value = base, .loaded_value = dst, }; } if (expression.property().is_identifier()) { auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string()); auto dst = preferred_dst.has_value() ? preferred_dst.value() : allocate_register(); emit_get_by_id(dst, base, identifier_table_ref, move(base_identifier)); return ReferenceOperands { .base = base, .referenced_identifier = identifier_table_ref, .this_value = base, .loaded_value = dst, }; } if (expression.property().is_private_identifier()) { auto identifier_table_ref = intern_identifier(verify_cast<PrivateIdentifier>(expression.property()).string()); auto dst = preferred_dst.has_value() ? preferred_dst.value() : allocate_register(); emit<Bytecode::Op::GetPrivateById>(dst, base, identifier_table_ref); return ReferenceOperands { .base = base, .referenced_private_identifier = identifier_table_ref, .this_value = base, .loaded_value = dst, }; } return CodeGenerationError { &expression, "Unimplemented non-computed member expression"sv }; } CodeGenerationErrorOr<void> Generator::emit_store_to_reference(JS::ASTNode const& node, ScopedOperand value) { if (is<Identifier>(node)) { auto& identifier = static_cast<Identifier const&>(node); emit_set_variable(identifier, value); return {}; } if (is<MemberExpression>(node)) { auto& expression = static_cast<MemberExpression const&>(node); // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation if (is<SuperExpression>(expression.object())) { auto super_reference = TRY(emit_super_reference(expression)); // 4. Return the Reference Record { [[Base]]: baseValue, [[ReferencedName]]: propertyKey, [[Strict]]: strict, [[ThisValue]]: actualThis }. if (super_reference.referenced_name.has_value()) { // 5. Let propertyKey be ? ToPropertyKey(propertyNameValue). // FIXME: This does ToPropertyKey out of order, which is observable by Symbol.toPrimitive! emit<Bytecode::Op::PutByValueWithThis>(*super_reference.base, *super_reference.referenced_name, *super_reference.this_value, value); } else { // 3. Let propertyKey be StringValue of IdentifierName. auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string()); emit<Bytecode::Op::PutByIdWithThis>(*super_reference.base, *super_reference.this_value, identifier_table_ref, value, Bytecode::Op::PropertyKind::KeyValue, next_property_lookup_cache()); } } else { auto object = TRY(expression.object().generate_bytecode(*this)).value(); if (expression.is_computed()) { auto property = TRY(expression.property().generate_bytecode(*this)).value(); emit<Bytecode::Op::PutByValue>(object, property, value); } else if (expression.property().is_identifier()) { auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string()); emit<Bytecode::Op::PutById>(object, identifier_table_ref, value, Bytecode::Op::PropertyKind::KeyValue, next_property_lookup_cache()); } else if (expression.property().is_private_identifier()) { auto identifier_table_ref = intern_identifier(verify_cast<PrivateIdentifier>(expression.property()).string()); emit<Bytecode::Op::PutPrivateById>(object, identifier_table_ref, value); } else { return CodeGenerationError { &expression, "Unimplemented non-computed member expression"sv }; } } return {}; } return CodeGenerationError { &node, "Unimplemented/invalid node used a reference"sv }; } CodeGenerationErrorOr<void> Generator::emit_store_to_reference(ReferenceOperands const& reference, ScopedOperand value) { if (reference.referenced_private_identifier.has_value()) { emit<Bytecode::Op::PutPrivateById>(*reference.base, *reference.referenced_private_identifier, value); return {}; } if (reference.referenced_identifier.has_value()) { if (reference.base == reference.this_value) emit<Bytecode::Op::PutById>(*reference.base, *reference.referenced_identifier, value, Bytecode::Op::PropertyKind::KeyValue, next_property_lookup_cache()); else emit<Bytecode::Op::PutByIdWithThis>(*reference.base, *reference.this_value, *reference.referenced_identifier, value, Bytecode::Op::PropertyKind::KeyValue, next_property_lookup_cache()); return {}; } if (reference.base == reference.this_value) emit<Bytecode::Op::PutByValue>(*reference.base, *reference.referenced_name, value); else emit<Bytecode::Op::PutByValueWithThis>(*reference.base, *reference.referenced_name, *reference.this_value, value); return {}; } CodeGenerationErrorOr<Optional<ScopedOperand>> Generator::emit_delete_reference(JS::ASTNode const& node) { if (is<Identifier>(node)) { auto& identifier = static_cast<Identifier const&>(node); if (identifier.is_local()) { return add_constant(Value(false)); } auto dst = allocate_register(); emit<Bytecode::Op::DeleteVariable>(dst, intern_identifier(identifier.string())); return dst; } if (is<MemberExpression>(node)) { auto& expression = static_cast<MemberExpression const&>(node); // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation if (is<SuperExpression>(expression.object())) { auto super_reference = TRY(emit_super_reference(expression)); auto dst = allocate_register(); if (super_reference.referenced_name.has_value()) { emit<Bytecode::Op::DeleteByValueWithThis>(dst, *super_reference.base, *super_reference.this_value, *super_reference.referenced_name); } else { auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string()); emit<Bytecode::Op::DeleteByIdWithThis>(dst, *super_reference.base, *super_reference.this_value, identifier_table_ref); } return Optional<ScopedOperand> {}; } auto object = TRY(expression.object().generate_bytecode(*this)).value(); auto dst = allocate_register(); if (expression.is_computed()) { auto property = TRY(expression.property().generate_bytecode(*this)).value(); emit<Bytecode::Op::DeleteByValue>(dst, object, property); } else if (expression.property().is_identifier()) { auto identifier_table_ref = intern_identifier(verify_cast<Identifier>(expression.property()).string()); emit<Bytecode::Op::DeleteById>(dst, object, identifier_table_ref); } else { // NOTE: Trying to delete a private field generates a SyntaxError in the parser. return CodeGenerationError { &expression, "Unimplemented non-computed member expression"sv }; } return dst; } // Though this will have no deletion effect, we still have to evaluate the node as it can have side effects. // For example: delete a(); delete ++c.b; etc. // 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation // 1. Let ref be the result of evaluating UnaryExpression. // 2. ReturnIfAbrupt(ref). (void)TRY(node.generate_bytecode(*this)); // 3. If ref is not a Reference Record, return true. // NOTE: The rest of the steps are handled by Delete{Variable,ByValue,Id}. return add_constant(Value(true)); } void Generator::emit_set_variable(JS::Identifier const& identifier, ScopedOperand value, Bytecode::Op::BindingInitializationMode initialization_mode, Bytecode::Op::EnvironmentMode environment_mode) { if (identifier.is_local()) { if (value.operand().is_local() && value.operand().index() == identifier.local_variable_index()) { // Moving a local to itself is a no-op. return; } emit<Bytecode::Op::Mov>(local(identifier.local_variable_index()), value); } else { auto identifier_index = intern_identifier(identifier.string()); if (environment_mode == Bytecode::Op::EnvironmentMode::Lexical) { if (initialization_mode == Bytecode::Op::BindingInitializationMode::Initialize) { emit<Bytecode::Op::InitializeLexicalBinding>(identifier_index, value); } else if (initialization_mode == Bytecode::Op::BindingInitializationMode::Set) { emit<Bytecode::Op::SetLexicalBinding>(identifier_index, value); } } else if (environment_mode == Bytecode::Op::EnvironmentMode::Var) { if (initialization_mode == Bytecode::Op::BindingInitializationMode::Initialize) { emit<Bytecode::Op::InitializeVariableBinding>(identifier_index, value); } else if (initialization_mode == Bytecode::Op::BindingInitializationMode::Set) { emit<Bytecode::Op::SetVariableBinding>(identifier_index, value); } } else { VERIFY_NOT_REACHED(); } } } static Optional<ByteString> expression_identifier(Expression const& expression) { if (expression.is_identifier()) { auto const& identifier = static_cast<Identifier const&>(expression); return identifier.string(); } if (expression.is_numeric_literal()) { auto const& literal = static_cast<NumericLiteral const&>(expression); return literal.value().to_string_without_side_effects().to_byte_string(); } if (expression.is_string_literal()) { auto const& literal = static_cast<StringLiteral const&>(expression); return ByteString::formatted("'{}'", literal.value()); } if (expression.is_member_expression()) { auto const& member_expression = static_cast<MemberExpression const&>(expression); StringBuilder builder; if (auto identifer = expression_identifier(member_expression.object()); identifer.has_value()) builder.append(*identifer); if (auto identifer = expression_identifier(member_expression.property()); identifer.has_value()) { if (member_expression.is_computed()) builder.appendff("[{}]", *identifer); else builder.appendff(".{}", *identifer); } return builder.to_byte_string(); } return {}; } Optional<IdentifierTableIndex> Generator::intern_identifier_for_expression(Expression const& expression) { if (auto identifer = expression_identifier(expression); identifer.has_value()) return intern_identifier(identifer.release_value()); return {}; } void Generator::generate_scoped_jump(JumpType type) { TemporaryChange temp { m_current_unwind_context, m_current_unwind_context }; bool last_was_finally = false; for (size_t i = m_boundaries.size(); i > 0; --i) { auto boundary = m_boundaries[i - 1]; using enum BlockBoundaryType; switch (boundary) { case Break: if (type == JumpType::Break) { emit<Op::Jump>(nearest_breakable_scope()); return; } break; case Continue: if (type == JumpType::Continue) { emit<Op::Jump>(nearest_continuable_scope()); return; } break; case Unwind: if (!last_was_finally) { VERIFY(m_current_unwind_context && m_current_unwind_context->handler().has_value()); emit<Bytecode::Op::LeaveUnwindContext>(); m_current_unwind_context = m_current_unwind_context->previous(); } last_was_finally = false; break; case LeaveLexicalEnvironment: emit<Bytecode::Op::LeaveLexicalEnvironment>(); break; case ReturnToFinally: { VERIFY(m_current_unwind_context->finalizer().has_value()); m_current_unwind_context = m_current_unwind_context->previous(); auto jump_type_name = type == JumpType::Break ? "break"sv : "continue"sv; auto block_name = MUST(String::formatted("{}.{}", current_block().name(), jump_type_name)); auto& block = make_block(block_name); emit<Op::ScheduleJump>(Label { block }); switch_to_basic_block(block); last_was_finally = true; break; } case LeaveFinally: emit<Op::LeaveFinally>(); break; } } VERIFY_NOT_REACHED(); } void Generator::generate_labelled_jump(JumpType type, DeprecatedFlyString const& label) { TemporaryChange temp { m_current_unwind_context, m_current_unwind_context }; size_t current_boundary = m_boundaries.size(); bool last_was_finally = false; auto const& jumpable_scopes = type == JumpType::Continue ? m_continuable_scopes : m_breakable_scopes; for (auto const& jumpable_scope : jumpable_scopes.in_reverse()) { for (; current_boundary > 0; --current_boundary) { auto boundary = m_boundaries[current_boundary - 1]; if (boundary == BlockBoundaryType::Unwind) { if (!last_was_finally) { VERIFY(m_current_unwind_context && m_current_unwind_context->handler().has_value()); emit<Bytecode::Op::LeaveUnwindContext>(); m_current_unwind_context = m_current_unwind_context->previous(); } last_was_finally = false; } else if (boundary == BlockBoundaryType::LeaveLexicalEnvironment) { emit<Bytecode::Op::LeaveLexicalEnvironment>(); } else if (boundary == BlockBoundaryType::ReturnToFinally) { VERIFY(m_current_unwind_context->finalizer().has_value()); m_current_unwind_context = m_current_unwind_context->previous(); auto jump_type_name = type == JumpType::Break ? "break"sv : "continue"sv; auto block_name = MUST(String::formatted("{}.{}", current_block().name(), jump_type_name)); auto& block = make_block(block_name); emit<Op::ScheduleJump>(Label { block }); switch_to_basic_block(block); last_was_finally = true; } else if ((type == JumpType::Continue && boundary == BlockBoundaryType::Continue) || (type == JumpType::Break && boundary == BlockBoundaryType::Break)) { // Make sure we don't process this boundary twice if the current jumpable scope doesn't contain the target label. --current_boundary; break; } } if (jumpable_scope.language_label_set.contains_slow(label)) { emit<Op::Jump>(jumpable_scope.bytecode_target); return; } } // We must have a jumpable scope available that contains the label, as this should be enforced by the parser. VERIFY_NOT_REACHED(); } void Generator::generate_break() { generate_scoped_jump(JumpType::Break); } void Generator::generate_break(DeprecatedFlyString const& break_label) { generate_labelled_jump(JumpType::Break, break_label); } void Generator::generate_continue() { generate_scoped_jump(JumpType::Continue); } void Generator::generate_continue(DeprecatedFlyString const& continue_label) { generate_labelled_jump(JumpType::Continue, continue_label); } void Generator::push_home_object(ScopedOperand object) { m_home_objects.append(object); } void Generator::pop_home_object() { m_home_objects.take_last(); } void Generator::emit_new_function(ScopedOperand dst, FunctionExpression const& function_node, Optional<IdentifierTableIndex> lhs_name) { if (m_home_objects.is_empty()) { emit<Op::NewFunction>(dst, function_node, lhs_name); } else { emit<Op::NewFunction>(dst, function_node, lhs_name, m_home_objects.last()); } } CodeGenerationErrorOr<Optional<ScopedOperand>> Generator::emit_named_evaluation_if_anonymous_function(Expression const& expression, Optional<IdentifierTableIndex> lhs_name, Optional<ScopedOperand> preferred_dst) { if (is<FunctionExpression>(expression)) { auto const& function_expression = static_cast<FunctionExpression const&>(expression); if (!function_expression.has_name()) { return TRY(function_expression.generate_bytecode_with_lhs_name(*this, move(lhs_name), preferred_dst)).value(); } } if (is<ClassExpression>(expression)) { auto const& class_expression = static_cast<ClassExpression const&>(expression); if (!class_expression.has_name()) { return TRY(class_expression.generate_bytecode_with_lhs_name(*this, move(lhs_name), preferred_dst)).value(); } } return expression.generate_bytecode(*this, preferred_dst); } void Generator::emit_get_by_id(ScopedOperand dst, ScopedOperand base, IdentifierTableIndex property_identifier, Optional<IdentifierTableIndex> base_identifier) { if (m_identifier_table->get(property_identifier) == "length"sv) { m_length_identifier = property_identifier; emit<Op::GetLength>(dst, base, move(base_identifier), m_next_property_lookup_cache++); return; } emit<Op::GetById>(dst, base, property_identifier, move(base_identifier), m_next_property_lookup_cache++); } void Generator::emit_get_by_id_with_this(ScopedOperand dst, ScopedOperand base, IdentifierTableIndex id, ScopedOperand this_value) { if (m_identifier_table->get(id) == "length"sv) { emit<Op::GetLengthWithThis>(dst, base, this_value, m_next_property_lookup_cache++); return; } emit<Op::GetByIdWithThis>(dst, base, id, this_value, m_next_property_lookup_cache++); } void Generator::emit_iterator_value(ScopedOperand dst, ScopedOperand result) { emit_get_by_id(dst, result, intern_identifier("value"sv)); } void Generator::emit_iterator_complete(ScopedOperand dst, ScopedOperand result) { emit_get_by_id(dst, result, intern_identifier("done"sv)); } bool Generator::is_local_initialized(u32 local_index) const { return m_initialized_locals.find(local_index) != m_initialized_locals.end(); } void Generator::set_local_initialized(u32 local_index) { m_initialized_locals.set(local_index); } ScopedOperand Generator::get_this(Optional<ScopedOperand> preferred_dst) { if (m_current_basic_block->has_resolved_this()) return this_value(); if (m_root_basic_blocks[0]->has_resolved_this()) { m_current_basic_block->set_has_resolved_this(); return this_value(); } // OPTIMIZATION: If we're compiling a function that doesn't allocate a FunctionEnvironment, // it will always have the same `this` value as the outer function, // and so the `this` value is already in the `this` register! if (m_function && !m_function->allocates_function_environment()) return this_value(); auto dst = preferred_dst.has_value() ? preferred_dst.value() : allocate_register(); emit<Bytecode::Op::ResolveThisBinding>(); m_current_basic_block->set_has_resolved_this(); return this_value(); } ScopedOperand Generator::accumulator() { return m_accumulator; } ScopedOperand Generator::this_value() { return m_this_value; } bool Generator::fuse_compare_and_jump(ScopedOperand const& condition, Label true_target, Label false_target) { auto& last_instruction = *reinterpret_cast<Instruction const*>(m_current_basic_block->data() + m_current_basic_block->last_instruction_start_offset()); #define HANDLE_COMPARISON_OP(op_TitleCase, op_snake_case, numeric_operator) \ if (last_instruction.type() == Instruction::Type::op_TitleCase) { \ auto& comparison = static_cast<Op::op_TitleCase const&>(last_instruction); \ VERIFY(comparison.dst() == condition); \ auto lhs = comparison.lhs(); \ auto rhs = comparison.rhs(); \ m_current_basic_block->rewind(); \ emit<Op::Jump##op_TitleCase>(lhs, rhs, true_target, false_target); \ return true; \ } JS_ENUMERATE_COMPARISON_OPS(HANDLE_COMPARISON_OP); #undef HANDLE_COMPARISON_OP return false; } void Generator::emit_jump_if(ScopedOperand const& condition, Label true_target, Label false_target) { if (condition.operand().is_constant()) { auto value = m_constants[condition.operand().index()]; if (value.is_boolean()) { if (value.as_bool()) { emit<Op::Jump>(true_target); } else { emit<Op::Jump>(false_target); } return; } } // NOTE: It's only safe to fuse compare-and-jump if the condition is a temporary with no other dependents. if (condition.operand().is_register() && condition.ref_count() == 1 && m_current_basic_block->size() > 0) { if (fuse_compare_and_jump(condition, true_target, false_target)) return; } emit<Op::JumpIf>(condition, true_target, false_target); } ScopedOperand Generator::copy_if_needed_to_preserve_evaluation_order(ScopedOperand const& operand) { if (!operand.operand().is_local()) return operand; auto new_register = allocate_register(); emit<Bytecode::Op::Mov>(new_register, operand); return new_register; } ScopedOperand Generator::add_constant(Value value) { auto append_new_constant = [&] { m_constants.append(value); return ScopedOperand { *this, Operand(Operand::Type::Constant, m_constants.size() - 1) }; }; if (value.is_boolean()) { if (value.as_bool()) { if (!m_true_constant.has_value()) m_true_constant = append_new_constant(); return m_true_constant.value(); } else { if (!m_false_constant.has_value()) m_false_constant = append_new_constant(); return m_false_constant.value(); } } if (value.is_undefined()) { if (!m_undefined_constant.has_value()) m_undefined_constant = append_new_constant(); return m_undefined_constant.value(); } if (value.is_null()) { if (!m_null_constant.has_value()) m_null_constant = append_new_constant(); return m_null_constant.value(); } if (value.is_empty()) { if (!m_empty_constant.has_value()) m_empty_constant = append_new_constant(); return m_empty_constant.value(); } if (value.is_int32()) { auto as_int32 = value.as_i32(); return m_int32_constants.ensure(as_int32, [&] { return append_new_constant(); }); } return append_new_constant(); } }