/* * Copyright (c) 2020-2023, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include namespace JS { GC_DEFINE_ALLOCATOR(BigIntConstructor); static Crypto::SignedBigInteger const BIGINT_ONE { 1 }; static Crypto::SignedBigInteger const BIGINT_ZERO { 0 }; BigIntConstructor::BigIntConstructor(Realm& realm) : NativeFunction(realm.vm().names.BigInt.as_string(), realm.intrinsics().function_prototype()) { } void BigIntConstructor::initialize(Realm& realm) { auto& vm = this->vm(); Base::initialize(realm); // 21.2.2.3 BigInt.prototype, https://tc39.es/ecma262/#sec-bigint.prototype define_direct_property(vm.names.prototype, realm.intrinsics().bigint_prototype(), 0); u8 attr = Attribute::Writable | Attribute::Configurable; define_native_function(realm, vm.names.asIntN, as_int_n, 2, attr); define_native_function(realm, vm.names.asUintN, as_uint_n, 2, attr); define_direct_property(vm.names.length, Value(1), Attribute::Configurable); } // 21.2.1.1 BigInt ( value ), https://tc39.es/ecma262/#sec-bigint-constructor-number-value ThrowCompletionOr BigIntConstructor::call() { auto& vm = this->vm(); auto value = vm.argument(0); // 2. Let prim be ? ToPrimitive(value, number). auto primitive = TRY(value.to_primitive(vm, Value::PreferredType::Number)); // 3. If Type(prim) is Number, return ? NumberToBigInt(prim). if (primitive.is_number()) return TRY(number_to_bigint(vm, primitive)); // 4. Otherwise, return ? ToBigInt(prim). return TRY(primitive.to_bigint(vm)); } // 21.2.1.1 BigInt ( value ), https://tc39.es/ecma262/#sec-bigint-constructor-number-value ThrowCompletionOr> BigIntConstructor::construct(FunctionObject&) { return vm().throw_completion(ErrorType::NotAConstructor, "BigInt"); } // 21.2.2.1 BigInt.asIntN ( bits, bigint ), https://tc39.es/ecma262/#sec-bigint.asintn JS_DEFINE_NATIVE_FUNCTION(BigIntConstructor::as_int_n) { // 1. Set bits to ? ToIndex(bits). auto bits = TRY(vm.argument(0).to_index(vm)); // 2. Set bigint to ? ToBigInt(bigint). auto bigint = TRY(vm.argument(1).to_bigint(vm)); // OPTIMIZATION: mod = bigint (mod 2^0) = 0 < 2^(0-1) = 0.5 if (bits == 0) return BigInt::create(vm, BIGINT_ZERO); // 3. Let mod be ℝ(bigint) modulo 2^bits. auto const mod = TRY_OR_THROW_OOM(vm, bigint->big_integer().mod_power_of_two(bits)); // OPTIMIZATION: mod < 2^(bits-1) if (mod.is_zero()) return BigInt::create(vm, BIGINT_ZERO); // 4. If mod ≥ 2^(bits-1), return ℤ(mod - 2^bits); ... if (auto top_bit_index = mod.unsigned_value().one_based_index_of_highest_set_bit(); top_bit_index >= bits) { // twos complement decode auto decoded = TRY_OR_THROW_OOM(vm, mod.unsigned_value().try_bitwise_not_fill_to_one_based_index(bits)).plus(1); return BigInt::create(vm, Crypto::SignedBigInteger { std::move(decoded), true }); } // ... otherwise, return ℤ(mod). return BigInt::create(vm, mod); } // 21.2.2.2 BigInt.asUintN ( bits, bigint ), https://tc39.es/ecma262/#sec-bigint.asuintn JS_DEFINE_NATIVE_FUNCTION(BigIntConstructor::as_uint_n) { // 1. Set bits to ? ToIndex(bits). auto bits = TRY(vm.argument(0).to_index(vm)); // 2. Set bigint to ? ToBigInt(bigint). auto bigint = TRY(vm.argument(1).to_bigint(vm)); // 3. Return the BigInt value that represents ℝ(bigint) modulo 2^bits. auto const mod = TRY_OR_THROW_OOM(vm, bigint->big_integer().mod_power_of_two(bits)); return BigInt::create(vm, mod); } }