/* * Copyright (c) 2020-2022, Linus Groh * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include namespace JS { struct ClampedU8 { }; // 25.1.1 Notation (read-modify-write modification function), https://tc39.es/ecma262/#sec-arraybuffer-notation using ReadWriteModifyFunction = Function; enum class PreserveResizability { FixedLength, PreserveResizability }; // 6.2.9 Data Blocks, https://tc39.es/ecma262/#sec-data-blocks struct DataBlock { enum class Shared { No, Yes, }; ByteBuffer& buffer() { ByteBuffer* ptr { nullptr }; byte_buffer.visit([&](Empty) { VERIFY_NOT_REACHED(); }, [&](auto* pointer) { ptr = pointer; }, [&](auto& value) { ptr = &value; }); return *ptr; } ByteBuffer const& buffer() const { return const_cast(this)->buffer(); } size_t size() const { return byte_buffer.visit( [](Empty) -> size_t { return 0u; }, [](ByteBuffer const& buffer) { return buffer.size(); }, [](ByteBuffer const* buffer) { return buffer->size(); }); } Variant byte_buffer; Shared is_shared = { Shared::No }; }; class ArrayBuffer : public Object { JS_OBJECT(ArrayBuffer, Object); GC_DECLARE_ALLOCATOR(ArrayBuffer); public: static ThrowCompletionOr> create(Realm&, size_t); static GC::Ref create(Realm&, ByteBuffer); static GC::Ref create(Realm&, ByteBuffer*); virtual ~ArrayBuffer() override = default; size_t byte_length() const { return m_data_block.size(); } // [[ArrayBufferData]] ByteBuffer& buffer() { return m_data_block.buffer(); } ByteBuffer const& buffer() const { return m_data_block.buffer(); } // [[ArrayBufferMaxByteLength]] size_t max_byte_length() const { return m_max_byte_length.value(); } void set_max_byte_length(size_t max_byte_length) { m_max_byte_length = max_byte_length; } // Used by allocate_array_buffer() to attach the data block after construction void set_data_block(DataBlock block) { m_data_block = move(block); } Value detach_key() const { return m_detach_key; } void set_detach_key(Value detach_key) { m_detach_key = detach_key; } void detach_buffer() { m_data_block.byte_buffer = Empty {}; } // 25.1.3.4 IsDetachedBuffer ( arrayBuffer ), https://tc39.es/ecma262/#sec-isdetachedbuffer bool is_detached() const { // 1. If arrayBuffer.[[ArrayBufferData]] is null, return true. if (m_data_block.byte_buffer.has()) return true; // 2. Return false. return false; } // 25.1.3.9 IsFixedLengthArrayBuffer ( arrayBuffer ), https://tc39.es/ecma262/#sec-isfixedlengtharraybuffer bool is_fixed_length() const { // 1. If arrayBuffer has an [[ArrayBufferMaxByteLength]] internal slot, return false. if (m_max_byte_length.has_value()) return false; // 2. Return true. return true; } // 25.2.2.2 IsSharedArrayBuffer ( obj ), https://tc39.es/ecma262/#sec-issharedarraybuffer bool is_shared_array_buffer() const { // 1. Let bufferData be obj.[[ArrayBufferData]]. // 2. If bufferData is null, return false. if (m_data_block.byte_buffer.has()) return false; // 3. If bufferData is a Data Block, return false. if (m_data_block.is_shared == DataBlock::Shared::No) return false; // 4. Assert: bufferData is a Shared Data Block. VERIFY(m_data_block.is_shared == DataBlock::Shared::Yes); // 5. Return true. return true; } enum Order { SeqCst, Unordered }; template Value get_value(size_t byte_index, bool is_typed_array, Order, bool is_little_endian = true); template void set_value(size_t byte_index, Value value, bool is_typed_array, Order, bool is_little_endian = true); template Value get_modify_set_value(size_t byte_index, Value value, ReadWriteModifyFunction operation, bool is_little_endian = true); private: ArrayBuffer(ByteBuffer buffer, Object& prototype); ArrayBuffer(ByteBuffer* buffer, Object& prototype); virtual void visit_edges(Visitor&) override; DataBlock m_data_block; Optional m_max_byte_length; // The various detach related members of ArrayBuffer are not used by any ECMA262 functionality, // but are required to be available for the use of various harnesses like the Test262 test runner. Value m_detach_key; }; ThrowCompletionOr create_byte_data_block(VM& vm, size_t size); void copy_data_block_bytes(ByteBuffer& to_block, u64 to_index, ByteBuffer const& from_block, u64 from_index, u64 count); ThrowCompletionOr allocate_array_buffer(VM&, FunctionObject& constructor, size_t byte_length, Optional const& max_byte_length = {}); ThrowCompletionOr array_buffer_copy_and_detach(VM&, ArrayBuffer& array_buffer, Value new_length, PreserveResizability preserve_resizability); ThrowCompletionOr detach_array_buffer(VM&, ArrayBuffer& array_buffer, Optional key = {}); ThrowCompletionOr> get_array_buffer_max_byte_length_option(VM&, Value options); ThrowCompletionOr clone_array_buffer(VM&, ArrayBuffer& source_buffer, size_t source_byte_offset, size_t source_length); ThrowCompletionOr> allocate_shared_array_buffer(VM&, FunctionObject& constructor, size_t byte_length); // 25.1.3.2 ArrayBufferByteLength ( arrayBuffer, order ), https://tc39.es/ecma262/#sec-arraybufferbytelength inline size_t array_buffer_byte_length(ArrayBuffer const& array_buffer, ArrayBuffer::Order) { // FIXME: 1. If IsSharedArrayBuffer(arrayBuffer) is true and arrayBuffer has an [[ArrayBufferByteLengthData]] internal slot, then // FIXME: a. Let bufferByteLengthBlock be arrayBuffer.[[ArrayBufferByteLengthData]]. // FIXME: b. Let rawLength be GetRawBytesFromSharedBlock(bufferByteLengthBlock, 0, biguint64, true, order). // FIXME: c. Let isLittleEndian be the value of the [[LittleEndian]] field of the surrounding agent's Agent Record. // FIXME: d. Return ℝ(RawBytesToNumeric(biguint64, rawLength, isLittleEndian)). // 2. Assert: IsDetachedBuffer(arrayBuffer) is false. VERIFY(!array_buffer.is_detached()); // 3. Return arrayBuffer.[[ArrayBufferByteLength]]. return array_buffer.byte_length(); } // 25.1.3.14 RawBytesToNumeric ( type, rawBytes, isLittleEndian ), https://tc39.es/ecma262/#sec-rawbytestonumeric // 5 RawBytesToNumeric ( type, rawBytes, isLittleEndian ), https://tc39.es/proposal-float16array/#sec-rawbytestonumeric template static Value raw_bytes_to_numeric(VM& vm, Bytes raw_value, bool is_little_endian) { // 1. Let elementSize be the Element Size value specified in Table 70 for Element Type type. // NOTE: Used in step 7, but not needed with our implementation of that step. // 2. If isLittleEndian is false, reverse the order of the elements of rawBytes. if (!is_little_endian) { VERIFY(raw_value.size() % 2 == 0); for (size_t i = 0; i < raw_value.size() / 2; ++i) swap(raw_value[i], raw_value[raw_value.size() - 1 - i]); } using UnderlyingBufferDataType = Conditional, u8, T>; // 3. If type is Float16, then if constexpr (IsSame) { // a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding of an IEEE 754-2019 binary16 value. f16 value; raw_value.copy_to({ &value, sizeof(f16) }); // b. If value is an IEEE 754-2019 binary16 NaN value, return the NaN Number value. if (isnan(static_cast(value))) return js_nan(); // c. Return the Number value that corresponds to value. return Value(value); } // 4. If type is Float32, then if constexpr (IsSame) { // a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding of an IEEE 754-2019 binary32 value. float value; raw_value.copy_to({ &value, sizeof(float) }); // b. If value is an IEEE 754-2019 binary32 NaN value, return the NaN Number value. if (isnan(value)) return js_nan(); // c. Return the Number value that corresponds to value. return Value(value); } // 5. If type is Float64, then if constexpr (IsSame) { // a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding of an IEEE 754-2019 binary64 value. double value; raw_value.copy_to({ &value, sizeof(double) }); // b. If value is an IEEE 754-2019 binary64 NaN value, return the NaN Number value. if (isnan(value)) return js_nan(); // c. Return the Number value that corresponds to value. return Value(value); } // NOTE: Not in spec, sanity check for steps below. if constexpr (!IsIntegral) VERIFY_NOT_REACHED(); // 6. If IsUnsignedElementType(type) is true, then // a. Let intValue be the byte elements of rawBytes concatenated and interpreted as a bit string encoding of an unsigned little-endian binary number. // 7. Else, // a. Let intValue be the byte elements of rawBytes concatenated and interpreted as a bit string encoding of a binary little-endian two's complement number of bit length elementSize × 8. // // NOTE: The signed/unsigned logic above is implemented in step 7 by the IsSigned<> check, and in step 8 by JS::Value constructor overloads. UnderlyingBufferDataType int_value = 0; raw_value.copy_to({ &int_value, sizeof(UnderlyingBufferDataType) }); // 8. If IsBigIntElementType(type) is true, return the BigInt value that corresponds to intValue. if constexpr (sizeof(UnderlyingBufferDataType) == 8) { if constexpr (IsSigned) { static_assert(IsSame); return BigInt::create(vm, Crypto::SignedBigInteger { int_value }); } else { static_assert(IsOneOf); return BigInt::create(vm, Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { int_value } }); } } // 9. Otherwise, return the Number value that corresponds to intValue. else { return Value(int_value); } } // 25.1.3.16 GetValueFromBuffer ( arrayBuffer, byteIndex, type, isTypedArray, order [ , isLittleEndian ] ), https://tc39.es/ecma262/#sec-getvaluefrombuffer template Value ArrayBuffer::get_value(size_t byte_index, [[maybe_unused]] bool is_typed_array, Order, bool is_little_endian) { auto& vm = this->vm(); // 1. Assert: IsDetachedBuffer(arrayBuffer) is false. VERIFY(!is_detached()); // 2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type. VERIFY(m_data_block.buffer().bytes().slice(byte_index).size() >= sizeof(T)); // 3. Let block be arrayBuffer.[[ArrayBufferData]]. auto& block = m_data_block.buffer(); // 4. Let elementSize be the Element Size value specified in Table 70 for Element Type type. auto element_size = sizeof(T); AK::Array raw_value {}; // FIXME: 5. If IsSharedArrayBuffer(arrayBuffer) is true, then if (false) { // FIXME: a. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record. // FIXME: b. Let eventsRecord be the Agent Events Record of execution.[[EventsRecords]] whose [[AgentSignifier]] is AgentSignifier(). // FIXME: c. If isTypedArray is true and IsNoTearConfiguration(type, order) is true, let noTear be true; otherwise let noTear be false. // FIXME: d. Let rawValue be a List of length elementSize whose elements are nondeterministically chosen byte values. // FIXME: e. NOTE: In implementations, rawValue is the result of a non-atomic or atomic read instruction on the underlying hardware. The nondeterminism is a semantic prescription of the memory model to describe observable behaviour of hardware with weak consistency. // FIXME: f. Let readEvent be ReadSharedMemory { [[Order]]: order, [[NoTear]]: noTear, [[Block]]: block, [[ByteIndex]]: byteIndex, [[ElementSize]]: elementSize }. // FIXME: g. Append readEvent to eventsRecord.[[EventList]]. // FIXME: h. Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]]: rawValue } to execution.[[ChosenValues]]. } // 6. Else, else { // a. Let rawValue be a List whose elements are bytes from block at indices in the interval from byteIndex (inclusive) to byteIndex + elementSize (exclusive). block.bytes().slice(byte_index, element_size).copy_to(raw_value); } // 7. Assert: The number of elements in rawValue is elementSize. VERIFY(raw_value.size() == element_size); // 8. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's Agent Record. // NOTE: Done by default parameter at declaration of this function. // 9. Return RawBytesToNumeric(type, rawValue, isLittleEndian). return raw_bytes_to_numeric(vm, raw_value, is_little_endian); } // 25.1.3.17 NumericToRawBytes ( type, value, isLittleEndian ), https://tc39.es/ecma262/#sec-numerictorawbytes // 6 NumericToRawBytes ( type, value, isLittleEndian ), https://tc39.es/proposal-float16array/#sec-numerictorawbytes template static void numeric_to_raw_bytes(VM& vm, Value value, bool is_little_endian, Bytes raw_bytes) { VERIFY(value.is_number() || value.is_bigint()); using UnderlyingBufferDataType = Conditional, u8, T>; VERIFY(raw_bytes.size() == sizeof(UnderlyingBufferDataType)); auto flip_if_needed = [&]() { if (is_little_endian) return; VERIFY(sizeof(UnderlyingBufferDataType) % 2 == 0); for (size_t i = 0; i < sizeof(UnderlyingBufferDataType) / 2; ++i) swap(raw_bytes[i], raw_bytes[sizeof(UnderlyingBufferDataType) - 1 - i]); }; if constexpr (IsSame) { auto raw_value = static_cast(MUST(value.to_double(vm))); ReadonlyBytes { &raw_value, sizeof(f16) }.copy_to(raw_bytes); flip_if_needed(); return; } if constexpr (IsSame) { float raw_value = MUST(value.to_double(vm)); ReadonlyBytes { &raw_value, sizeof(float) }.copy_to(raw_bytes); flip_if_needed(); return; } if constexpr (IsSame) { double raw_value = MUST(value.to_double(vm)); ReadonlyBytes { &raw_value, sizeof(double) }.copy_to(raw_bytes); flip_if_needed(); return; } if constexpr (!IsIntegral) VERIFY_NOT_REACHED(); if constexpr (sizeof(UnderlyingBufferDataType) == 8) { UnderlyingBufferDataType int_value; if constexpr (IsSigned) int_value = MUST(value.to_bigint_int64(vm)); else int_value = MUST(value.to_bigint_uint64(vm)); ReadonlyBytes { &int_value, sizeof(UnderlyingBufferDataType) }.copy_to(raw_bytes); flip_if_needed(); return; } else { UnderlyingBufferDataType int_value; if constexpr (IsSigned) { if constexpr (sizeof(UnderlyingBufferDataType) == 4) int_value = MUST(value.to_i32(vm)); else if constexpr (sizeof(UnderlyingBufferDataType) == 2) int_value = MUST(value.to_i16(vm)); else int_value = MUST(value.to_i8(vm)); } else { if constexpr (sizeof(UnderlyingBufferDataType) == 4) int_value = MUST(value.to_u32(vm)); else if constexpr (sizeof(UnderlyingBufferDataType) == 2) int_value = MUST(value.to_u16(vm)); else if constexpr (!IsSame) int_value = MUST(value.to_u8(vm)); else int_value = MUST(value.to_u8_clamp(vm)); } ReadonlyBytes { &int_value, sizeof(UnderlyingBufferDataType) }.copy_to(raw_bytes); if constexpr (sizeof(UnderlyingBufferDataType) % 2 == 0) flip_if_needed(); return; } } // 25.1.3.18 SetValueInBuffer ( arrayBuffer, byteIndex, type, value, isTypedArray, order [ , isLittleEndian ] ), https://tc39.es/ecma262/#sec-setvalueinbuffer template void ArrayBuffer::set_value(size_t byte_index, Value value, [[maybe_unused]] bool is_typed_array, Order, bool is_little_endian) { auto& vm = this->vm(); // 1. Assert: IsDetachedBuffer(arrayBuffer) is false. VERIFY(!is_detached()); // 2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type. VERIFY(m_data_block.buffer().bytes().slice(byte_index).size() >= sizeof(T)); // 3. Assert: value is a BigInt if IsBigIntElementType(type) is true; otherwise, value is a Number. if constexpr (IsIntegral && sizeof(T) == 8) VERIFY(value.is_bigint()); else VERIFY(value.is_number()); // 4. Let block be arrayBuffer.[[ArrayBufferData]]. auto& block = m_data_block.buffer(); // FIXME: 5. Let elementSize be the Element Size value specified in Table 70 for Element Type type. // 6. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's Agent Record. // NOTE: Done by default parameter at declaration of this function. // 7. Let rawBytes be NumericToRawBytes(type, value, isLittleEndian). AK::Array raw_bytes; numeric_to_raw_bytes(vm, value, is_little_endian, raw_bytes); // FIXME 8. If IsSharedArrayBuffer(arrayBuffer) is true, then if (false) { // FIXME: a. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record. // FIXME: b. Let eventsRecord be the Agent Events Record of execution.[[EventsRecords]] whose [[AgentSignifier]] is AgentSignifier(). // FIXME: c. If isTypedArray is true and IsNoTearConfiguration(type, order) is true, let noTear be true; otherwise let noTear be false. // FIXME: d. Append WriteSharedMemory { [[Order]]: order, [[NoTear]]: noTear, [[Block]]: block, [[ByteIndex]]: byteIndex, [[ElementSize]]: elementSize, [[Payload]]: rawBytes } to eventsRecord.[[EventList]]. } // 9. Else, else { // a. Store the individual bytes of rawBytes into block, starting at block[byteIndex]. raw_bytes.span().copy_to(block.span().slice(byte_index)); } // 10. Return unused. } // 25.1.3.19 GetModifySetValueInBuffer ( arrayBuffer, byteIndex, type, value, op [ , isLittleEndian ] ), https://tc39.es/ecma262/#sec-getmodifysetvalueinbuffer template Value ArrayBuffer::get_modify_set_value(size_t byte_index, Value value, ReadWriteModifyFunction operation, bool is_little_endian) { auto& vm = this->vm(); auto raw_bytes = MUST(ByteBuffer::create_uninitialized(sizeof(T))); numeric_to_raw_bytes(vm, value, is_little_endian, raw_bytes); // FIXME: Check for shared buffer auto raw_bytes_read = MUST(ByteBuffer::create_uninitialized(sizeof(T))); m_data_block.buffer().bytes().slice(byte_index, sizeof(T)).copy_to(raw_bytes_read); auto raw_bytes_modified = operation(raw_bytes_read, raw_bytes); raw_bytes_modified.span().copy_to(m_data_block.buffer().span().slice(byte_index)); return raw_bytes_to_numeric(vm, raw_bytes_read, is_little_endian); } }