/* * Copyright (c) 2020-2023, Andreas Kling * Copyright (c) 2020-2023, Linus Groh * Copyright (c) 2021, Idan Horowitz * Copyright (c) 2023, Shannon Booth * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace JS { GC_DEFINE_ALLOCATOR(MathObject); MathObject::MathObject(Realm& realm) : Object(ConstructWithPrototypeTag::Tag, realm.intrinsics().object_prototype()) { } void MathObject::initialize(Realm& realm) { auto& vm = this->vm(); Base::initialize(realm); u8 attr = Attribute::Writable | Attribute::Configurable; define_native_function(realm, vm.names.abs, abs, 1, attr, Bytecode::Builtin::MathAbs); define_native_function(realm, vm.names.random, random, 0, attr, Bytecode::Builtin::MathRandom); define_native_function(realm, vm.names.sqrt, sqrt, 1, attr, Bytecode::Builtin::MathSqrt); define_native_function(realm, vm.names.floor, floor, 1, attr, Bytecode::Builtin::MathFloor); define_native_function(realm, vm.names.ceil, ceil, 1, attr, Bytecode::Builtin::MathCeil); define_native_function(realm, vm.names.round, round, 1, attr, Bytecode::Builtin::MathRound); define_native_function(realm, vm.names.max, max, 2, attr); define_native_function(realm, vm.names.min, min, 2, attr); define_native_function(realm, vm.names.trunc, trunc, 1, attr); define_native_function(realm, vm.names.sin, sin, 1, attr); define_native_function(realm, vm.names.cos, cos, 1, attr); define_native_function(realm, vm.names.tan, tan, 1, attr); define_native_function(realm, vm.names.pow, pow, 2, attr, Bytecode::Builtin::MathPow); define_native_function(realm, vm.names.exp, exp, 1, attr, Bytecode::Builtin::MathExp); define_native_function(realm, vm.names.expm1, expm1, 1, attr); define_native_function(realm, vm.names.sign, sign, 1, attr); define_native_function(realm, vm.names.clz32, clz32, 1, attr); define_native_function(realm, vm.names.acos, acos, 1, attr); define_native_function(realm, vm.names.acosh, acosh, 1, attr); define_native_function(realm, vm.names.asin, asin, 1, attr); define_native_function(realm, vm.names.asinh, asinh, 1, attr); define_native_function(realm, vm.names.atan, atan, 1, attr); define_native_function(realm, vm.names.atanh, atanh, 1, attr); define_native_function(realm, vm.names.log1p, log1p, 1, attr); define_native_function(realm, vm.names.cbrt, cbrt, 1, attr); define_native_function(realm, vm.names.atan2, atan2, 2, attr); define_native_function(realm, vm.names.fround, fround, 1, attr); define_native_function(realm, vm.names.f16round, f16round, 1, attr); define_native_function(realm, vm.names.hypot, hypot, 2, attr); define_native_function(realm, vm.names.imul, imul, 2, attr, Bytecode::Builtin::MathImul); define_native_function(realm, vm.names.log, log, 1, attr, Bytecode::Builtin::MathLog); define_native_function(realm, vm.names.log2, log2, 1, attr); define_native_function(realm, vm.names.log10, log10, 1, attr); define_native_function(realm, vm.names.sinh, sinh, 1, attr); define_native_function(realm, vm.names.cosh, cosh, 1, attr); define_native_function(realm, vm.names.tanh, tanh, 1, attr); define_native_function(realm, vm.names.sumPrecise, sumPrecise, 1, attr); // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object define_direct_property(vm.names.E, Value(M_E), 0); define_direct_property(vm.names.LN2, Value(M_LN2), 0); define_direct_property(vm.names.LN10, Value(M_LN10), 0); define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0); define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0); define_direct_property(vm.names.PI, Value(M_PI), 0); define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0); define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0); // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag define_direct_property(vm.well_known_symbol_to_string_tag(), PrimitiveString::create(vm, vm.names.Math.as_string()), Attribute::Configurable); } // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs ThrowCompletionOr MathObject::abs_impl(VM& vm, Value x) { // OPTIMIZATION: Fast path for Int32 values. if (x.is_int32()) return Value(AK::abs(x.as_i32())); // Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is NaN, return NaN. if (number.is_nan()) return js_nan(); // 3. If n is -0𝔽, return +0𝔽. if (number.is_negative_zero()) return Value(0); // 4. If n is -∞𝔽, return +∞𝔽. if (number.is_negative_infinity()) return js_infinity(); // 5. If n < -0𝔽, return -n. // 6. Return n. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double()); } // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs JS_DEFINE_NATIVE_FUNCTION(MathObject::abs) { return abs_impl(vm, vm.argument(0)); } // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos JS_DEFINE_NATIVE_FUNCTION(MathObject::acos) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n > 1𝔽, or n < -1𝔽, return NaN. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1) return js_nan(); // 3. If n is 1𝔽, return +0𝔽. if (number.as_double() == 1) return Value(0); // 4. Return an implementation-approximated Number value representing the result of the inverse cosine of ℝ(n). return Value(::acos(number.as_double())); } // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN or n is +∞𝔽, return n. if (number.is_nan() || number.is_positive_infinity()) return number; // 3. If n is 1𝔽, return +0𝔽. if (number.as_double() == 1.0) return Value(0.0); // 4. If n < 1𝔽, return NaN. if (number.as_double() < 1) return js_nan(); // 5. Return an implementation-approximated Number value representing the result of the inverse hyperbolic cosine of ℝ(n). return Value(::acosh(number.as_double())); } // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin JS_DEFINE_NATIVE_FUNCTION(MathObject::asin) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n > 1𝔽 or n < -1𝔽, return NaN. if (number.as_double() > 1 || number.as_double() < -1) return js_nan(); // 4. Return an implementation-approximated Number value representing the result of the inverse sine of ℝ(n). return Value(::asin(number.as_double())); } // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n. if (!number.is_finite_number() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. Return an implementation-approximated Number value representing the result of the inverse hyperbolic sine of ℝ(n). return Value(::asinh(number.as_double())); } // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan JS_DEFINE_NATIVE_FUNCTION(MathObject::atan) { // Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is one of NaN, +0𝔽, or -0𝔽, return n. if (number.is_nan() || number.as_double() == 0) return number; // 3. If n is +∞𝔽, return an implementation-approximated Number value representing π / 2. if (number.is_positive_infinity()) return Value(M_PI_2); // 4. If n is -∞𝔽, return an implementation-approximated Number value representing -π / 2. if (number.is_negative_infinity()) return Value(-M_PI_2); // 5. Return an implementation-approximated Number value representing the result of the inverse tangent of ℝ(n). return Value(::atan(number.as_double())); } // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n > 1𝔽 or n < -1𝔽, return NaN. if (number.as_double() > 1. || number.as_double() < -1.) return js_nan(); // 4. If n is 1𝔽, return +∞𝔽. if (number.as_double() == 1.) return js_infinity(); // 5. If n is -1𝔽, return -∞𝔽. if (number.as_double() == -1.) return js_negative_infinity(); // 6. Return an implementation-approximated Number value representing the result of the inverse hyperbolic tangent of ℝ(n). return Value(::atanh(number.as_double())); } // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2 JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2) { auto constexpr three_quarters_pi = M_PI_4 + M_PI_2; // 1. Let ny be ? ToNumber(y). auto y = TRY(vm.argument(0).to_number(vm)); // 2. Let nx be ? ToNumber(x). auto x = TRY(vm.argument(1).to_number(vm)); // 3. If ny is NaN or nx is NaN, return NaN. if (y.is_nan() || x.is_nan()) return js_nan(); // 4. If ny is +∞𝔽, then if (y.is_positive_infinity()) { // a. If nx is +∞𝔽, return an implementation-approximated Number value representing π / 4. if (x.is_positive_infinity()) return Value(M_PI_4); // b. If nx is -∞𝔽, return an implementation-approximated Number value representing 3π / 4. if (x.is_negative_infinity()) return Value(three_quarters_pi); // c. Return an implementation-approximated Number value representing π / 2. return Value(M_PI_2); } // 5. If ny is -∞𝔽, then if (y.is_negative_infinity()) { // a. If nx is +∞𝔽, return an implementation-approximated Number value representing -π / 4. if (x.is_positive_infinity()) return Value(-M_PI_4); // b. If nx is -∞𝔽, return an implementation-approximated Number value representing -3π / 4. if (x.is_negative_infinity()) return Value(-three_quarters_pi); // c. Return an implementation-approximated Number value representing -π / 2. return Value(-M_PI_2); } // 6. If ny is +0𝔽, then if (y.is_positive_zero()) { // a. If nx > +0𝔽 or nx is +0𝔽, return +0𝔽. if (x.as_double() > 0 || x.is_positive_zero()) return Value(0.0); // b. Return an implementation-approximated Number value representing π. return Value(M_PI); } // 7. If ny is -0𝔽, then if (y.is_negative_zero()) { // a. If nx > +0𝔽 or nx is +0𝔽, return -0𝔽 if (x.as_double() > 0 || x.is_positive_zero()) return Value(-0.0); // b. Return an implementation-approximated Number value representing -π. return Value(-M_PI); } // 8. Assert: ny is finite and is neither +0𝔽 nor -0𝔽. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero()); // 9. If ny > +0𝔽, then if (y.as_double() > 0) { // a. If nx is +∞𝔽, return +0𝔽. if (x.is_positive_infinity()) return Value(0); // b. If nx is -∞𝔽, return an implementation-approximated Number value representing π. if (x.is_negative_infinity()) return Value(M_PI); // c. If nx is either +0𝔽 or -0𝔽, return an implementation-approximated Number value representing π / 2. if (x.is_positive_zero() || x.is_negative_zero()) return Value(M_PI_2); } // 10. If ny < -0𝔽, then if (y.as_double() < -0) { // a. If nx is +∞𝔽, return -0𝔽. if (x.is_positive_infinity()) return Value(-0.0); // b. If nx is -∞𝔽, return an implementation-approximated Number value representing -π. if (x.is_negative_infinity()) return Value(-M_PI); // c. If nx is either +0𝔽 or -0𝔽, return an implementation-approximated Number value representing -π / 2. if (x.is_positive_zero() || x.is_negative_zero()) return Value(-M_PI_2); } // 11. Assert: nx is finite and is neither +0𝔽 nor -0𝔽. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero()); // 12. Return an implementation-approximated Number value representing the result of the inverse tangent of the quotient ℝ(ny) / ℝ(nx). return Value(::atan2(y.as_double(), x.as_double())); } // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n. if (!number.is_finite_number() || number.as_double() == 0) return number; // 3. Return an implementation-approximated Number value representing the result of the cube root of ℝ(n). return Value(::cbrt(number.as_double())); } // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil ThrowCompletionOr MathObject::ceil_impl(VM& vm, Value x) { // 1. Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n. if (!number.is_finite_number() || number.as_double() == 0) return number; // 3. If n < -0𝔽 and n > -1𝔽, return -0𝔽. if (number.as_double() < 0 && number.as_double() > -1) return Value(-0.f); // 4. If n is an integral Number, return n. // 5. Return the smallest (closest to -∞) integral Number value that is not less than n. return Value(::ceil(number.as_double())); } // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil) { return ceil_impl(vm, vm.argument(0)); } // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32 JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32) { // 1. Let n be ? ToUint32(x). auto number = TRY(vm.argument(0).to_u32(vm)); // 2. Let p be the number of leading zero bits in the unsigned 32-bit binary representation of n. // 3. Return 𝔽(p). return Value(count_leading_zeroes_safe(number)); } // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos JS_DEFINE_NATIVE_FUNCTION(MathObject::cos) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN. if (number.is_nan() || number.is_infinity()) return js_nan(); // 3. If n is +0𝔽 or n is -0𝔽, return 1𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return Value(1); // 4. Return an implementation-approximated Number value representing the result of the cosine of ℝ(n). return Value(::cos(number.as_double())); } // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, return NaN. if (number.is_nan()) return js_nan(); // 3. If n is +∞𝔽 or n is -∞𝔽, return +∞𝔽. if (number.is_positive_infinity() || number.is_negative_infinity()) return js_infinity(); // 4. If n is +0𝔽 or n is -0𝔽, return 1𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return Value(1); // 5. Return an implementation-approximated Number value representing the result of the hyperbolic cosine of ℝ(n). return Value(::cosh(number.as_double())); } // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp ThrowCompletionOr MathObject::exp_impl(VM& vm, Value x) { // 1. Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is either NaN or +∞𝔽, return n. if (number.is_nan() || number.is_positive_infinity()) return number; // 3. If n is either +0𝔽 or -0𝔽, return 1𝔽. if (number.as_double() == 0) return Value(1); // 4. If n is -∞𝔽, return +0𝔽. if (number.is_negative_infinity()) return Value(0); // 5. Return an implementation-approximated Number value representing the result of the exponential function of ℝ(n). return Value(::exp(number.as_double())); } // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp JS_DEFINE_NATIVE_FUNCTION(MathObject::exp) { return exp_impl(vm, vm.argument(0)); } // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1 JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is one of NaN, +0𝔽, -0𝔽, or +∞𝔽, return n. if (number.is_nan() || number.as_double() == 0 || number.is_positive_infinity()) return number; // 3. If n is -∞𝔽, return -1𝔽. if (number.is_negative_infinity()) return Value(-1); // 4. Return an implementation-approximated Number value representing the result of subtracting 1 from the exponential function of ℝ(n). return Value(::expm1(number.as_double())); } // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor ThrowCompletionOr MathObject::floor_impl(VM& vm, Value x) { // 1. Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n. if (!number.is_finite_number() || number.as_double() == 0) return number; // 3. If n < 1𝔽 and n > +0𝔽, return +0𝔽. // 4. If n is an integral Number, return n. // 5. Return the greatest (closest to +∞) integral Number value that is not greater than n. return Value(::floor(number.as_double())); } // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor JS_DEFINE_NATIVE_FUNCTION(MathObject::floor) { return floor_impl(vm, vm.argument(0)); } // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround JS_DEFINE_NATIVE_FUNCTION(MathObject::fround) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, return NaN. if (number.is_nan()) return js_nan(); // 3. If n is one of +0𝔽, -0𝔽, +∞𝔽, or -∞𝔽, return n. if (number.as_double() == 0 || number.is_infinity()) return number; // 4. Let n32 be the result of converting n to a value in IEEE 754-2019 binary32 format using roundTiesToEven mode. // 5. Let n64 be the result of converting n32 to a value in IEEE 754-2019 binary64 format. // 6. Return the ECMAScript Number value corresponding to n64. return Value((float)number.as_double()); } // 3.1 Math.f16round ( x ), https://tc39.es/proposal-float16array/#sec-math.f16round JS_DEFINE_NATIVE_FUNCTION(MathObject::f16round) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, return NaN. if (number.is_nan()) return js_nan(); // 3. If n is one of +0𝔽, -0𝔽, +∞𝔽, or -∞𝔽, return n. if (number.as_double() == 0 || number.is_infinity()) return number; // 4. Let n16 be the result of converting n to IEEE 754-2019 binary16 format using roundTiesToEven mode. // 5. Let n64 be the result of converting n16 to IEEE 754-2019 binary64 format. // 6. Return the ECMAScript Number value corresponding to n64. return Value(static_cast(number.as_double())); } // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot) { // 1. Let coerced be a new empty List. Vector coerced; // 2. For each element arg of args, do for (size_t i = 0; i < vm.argument_count(); ++i) { // a. Let n be ? ToNumber(arg). auto number = TRY(vm.argument(i).to_number(vm)); // b. Append n to coerced. coerced.append(number); } // 3. For each element number of coerced, do for (auto& number : coerced) { // a. If number is either +∞𝔽 or -∞𝔽, return +∞𝔽. if (number.is_infinity()) return js_infinity(); } // 4. Let onlyZero be true. auto only_zero = true; double sum_of_squares = 0; // 5. For each element number of coerced, do for (auto& number : coerced) { // a. If number is NaN, return NaN. // OPTIMIZATION: For infinities, the result will be infinity with the same sign, so we can return early. if (number.is_nan() || number.is_infinity()) return number; // b. If number is neither +0𝔽 nor -0𝔽, set onlyZero to false. if (number.as_double() != 0) only_zero = false; sum_of_squares += number.as_double() * number.as_double(); } // 6. If onlyZero is true, return +0𝔽. if (only_zero) return Value(0); // 7. Return an implementation-approximated Number value representing the square root of the sum of squares of the mathematical values of the elements of coerced. return Value(::sqrt(sum_of_squares)); } // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul ThrowCompletionOr MathObject::imul_impl(VM& vm, Value arg_a, Value arg_b) { // 1. Let a be ℝ(? ToUint32(x)). auto const a = TRY(arg_a.to_u32(vm)); // 2. Let b be ℝ(? ToUint32(y)). auto const b = TRY(arg_b.to_u32(vm)); // 3. Let product be (a × b) modulo 2^32. // 4. If product ≥ 2^31, return 𝔽(product - 2^32); otherwise return 𝔽(product). return Value(static_cast(a * b)); } // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul JS_DEFINE_NATIVE_FUNCTION(MathObject::imul) { return imul_impl(vm, vm.argument(0), vm.argument(1)); } // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log ThrowCompletionOr MathObject::log_impl(VM& vm, Value x) { // 1. Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is NaN or n is +∞𝔽, return n. if (number.is_nan() || number.is_positive_infinity()) return number; // 3. If n is 1𝔽, return +0𝔽. if (number.as_double() == 1.) return Value(0); // 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return js_negative_infinity(); // 5. If n < -0𝔽, return NaN. if (number.as_double() < -0.) return js_nan(); // 6. Return an implementation-approximated Number value representing the result of the natural logarithm of ℝ(n). return Value(::log(number.as_double())); } // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log JS_DEFINE_NATIVE_FUNCTION(MathObject::log) { return log_impl(vm, vm.argument(0)); } // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +0𝔽, n is -0𝔽, or n is +∞𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero() || number.is_positive_infinity()) return number; // 3. If n is -1𝔽, return -∞𝔽. if (number.as_double() == -1.) return js_negative_infinity(); // 4. If n < -1𝔽, return NaN. if (number.as_double() < -1.) return js_nan(); // 5. Return an implementation-approximated Number value representing the result of the natural logarithm of 1 + ℝ(n). return Value(::log1p(number.as_double())); } // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10 JS_DEFINE_NATIVE_FUNCTION(MathObject::log10) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN or n is +∞𝔽, return n. if (number.is_nan() || number.is_positive_infinity()) return number; // 3. If n is 1𝔽, return +0𝔽. if (number.as_double() == 1.) return Value(0); // 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return js_negative_infinity(); // 5. If n < -0𝔽, return NaN. if (number.as_double() < -0.) return js_nan(); // 6. Return an implementation-approximated Number value representing the result of the base 10 logarithm of ℝ(n). return Value(::log10(number.as_double())); } // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2 JS_DEFINE_NATIVE_FUNCTION(MathObject::log2) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN or n is +∞𝔽, return n. if (number.is_nan() || number.is_positive_infinity()) return number; // 3. If n is 1𝔽, return +0𝔽. if (number.as_double() == 1.) return Value(0); // 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽. if (number.is_positive_zero() || number.is_negative_zero()) return js_negative_infinity(); // 5. If n < -0𝔽, return NaN. if (number.as_double() < -0.) return js_nan(); // 6. Return an implementation-approximated Number value representing the result of the base 2 logarithm of ℝ(n). return Value(::log2(number.as_double())); } // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max JS_DEFINE_NATIVE_FUNCTION(MathObject::max) { // 1. Let coerced be a new empty List. Vector coerced; // 2. For each element arg of args, do for (size_t i = 0; i < vm.argument_count(); ++i) { // a. Let n be ? ToNumber(arg). auto number = TRY(vm.argument(i).to_number(vm)); // b. Append n to coerced. coerced.append(number); } // 3. Let highest be -∞𝔽. auto highest = js_negative_infinity(); // 4. For each element number of coerced, do for (auto& number : coerced) { // a. If number is NaN, return NaN. if (number.is_nan()) return js_nan(); // b. If number is +0𝔽 and highest is -0𝔽, set highest to +0𝔽. // c. If number > highest, set highest to number. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double()) highest = number; } // 5. Return highest. return highest; } // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min JS_DEFINE_NATIVE_FUNCTION(MathObject::min) { // 1. Let coerced be a new empty List. Vector coerced; // 2. For each element arg of args, do for (size_t i = 0; i < vm.argument_count(); ++i) { // a. Let n be ? ToNumber(arg). auto number = TRY(vm.argument(i).to_number(vm)); // b. Append n to coerced. coerced.append(number); } // 3. Let lowest be +∞𝔽. auto lowest = js_infinity(); // 4. For each element number of coerced, do for (auto& number : coerced) { // a. If number is NaN, return NaN. if (number.is_nan()) return js_nan(); // b. If number is -0𝔽 and lowest is +0𝔽, set lowest to -0𝔽. // c. If number < lowest, set lowest to number. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double()) lowest = number; } // 5. Return lowest. return lowest; } // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow ThrowCompletionOr MathObject::pow_impl(VM& vm, Value base, Value exponent) { // Set base to ? ToNumber(base). base = TRY(base.to_number(vm)); // 2. Set exponent to ? ToNumber(exponent). exponent = TRY(exponent.to_number(vm)); // 3. Return Number::exponentiate(base, exponent). return JS::exp(vm, base, exponent); } // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow JS_DEFINE_NATIVE_FUNCTION(MathObject::pow) { return pow_impl(vm, vm.argument(0), vm.argument(1)); } class XorShift128PlusPlusRNG { public: XorShift128PlusPlusRNG() { u64 seed = get_random(); m_low = splitmix64(seed); m_high = splitmix64(seed); } double get() { u64 value = advance() & ((1ULL << 53) - 1); return value * (1.0 / (1ULL << 53)); } private: u64 splitmix64(u64& state) { u64 z = (state += 0x9e3779b97f4a7c15ULL); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9ULL; z = (z ^ (z >> 27)) * 0x94d049bb133111ebULL; return z ^ (z >> 31); } u64 advance() { u64 s1 = m_low; u64 const s0 = m_high; u64 const result = s0 + s1; m_low = s0; s1 ^= s1 << 23; s1 ^= s1 >> 17; s1 ^= s0 ^ (s0 >> 26); m_high = s1; return result + s1; } u64 m_low { 0 }; u64 m_high { 0 }; }; Value MathObject::random_impl() { // This function returns a Number value with positive sign, greater than or equal to +0𝔽 but strictly less than 1𝔽, // chosen randomly or pseudo randomly with approximately uniform distribution over that range, using an // implementation-defined algorithm or strategy. static XorShift128PlusPlusRNG rng; return Value(rng.get()); } // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random JS_DEFINE_NATIVE_FUNCTION(MathObject::random) { return random_impl(); } // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round ThrowCompletionOr MathObject::round_impl(VM& vm, Value x) { // 1. Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is not finite or n is an integral Number, return n. if (!number.is_finite_number() || number.as_double() == ::trunc(number.as_double())) return number; // 3. If n < 0.5𝔽 and n > +0𝔽, return +0𝔽. // 4. If n < -0𝔽 and n ≥ -0.5𝔽, return -0𝔽. // 5. Return the integral Number closest to n, preferring the Number closer to +∞ in the case of a tie. double integer = ::ceil(number.as_double()); if (integer - 0.5 > number.as_double()) integer--; return Value(integer); } // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round JS_DEFINE_NATIVE_FUNCTION(MathObject::round) { return round_impl(vm, vm.argument(0)); } // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign JS_DEFINE_NATIVE_FUNCTION(MathObject::sign) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is one of NaN, +0𝔽, or -0𝔽, return n. if (number.is_nan() || number.as_double() == 0) return number; // 3. If n < -0𝔽, return -1𝔽. if (number.as_double() < 0) return Value(-1); // 4. Return 1𝔽. return Value(1); } // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin JS_DEFINE_NATIVE_FUNCTION(MathObject::sin) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n is +∞𝔽 or n is -∞𝔽, return NaN. if (number.is_infinity()) return js_nan(); // 4. Return an implementation-approximated Number value representing the result of the sine of ℝ(n). return Value(::sin(number.as_double())); } // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n. if (!number.is_finite_number() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. Return an implementation-approximated Number value representing the result of the hyperbolic sine of ℝ(n). return Value(::sinh(number.as_double())); } // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt ThrowCompletionOr MathObject::sqrt_impl(VM& vm, Value x) { // Let n be ? ToNumber(x). auto number = TRY(x.to_number(vm)); // 2. If n is one of NaN, +0𝔽, -0𝔽, or +∞𝔽, return n. if (number.is_nan() || number.as_double() == 0 || number.is_positive_infinity()) return number; // 3. If n < -0𝔽, return NaN. if (number.as_double() < 0) return js_nan(); // 4. Return an implementation-approximated Number value representing the result of the square root of ℝ(n). return Value(::sqrt(number.as_double())); } // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt) { return sqrt_impl(vm, vm.argument(0)); } // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan JS_DEFINE_NATIVE_FUNCTION(MathObject::tan) { // Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n is +∞𝔽, or n is -∞𝔽, return NaN. if (number.is_infinity()) return js_nan(); // 4. Return an implementation-approximated Number value representing the result of the tangent of ℝ(n). return Value(::tan(number.as_double())); } // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero()) return number; // 3. If n is +∞𝔽, return 1𝔽. if (number.is_positive_infinity()) return Value(1); // 4. If n is -∞𝔽, return -1𝔽. if (number.is_negative_infinity()) return Value(-1); // 5. Return an implementation-approximated Number value representing the result of the hyperbolic tangent of ℝ(n). return Value(::tanh(number.as_double())); } // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc) { // 1. Let n be ? ToNumber(x). auto number = TRY(vm.argument(0).to_number(vm)); // 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n. if (number.is_nan() || number.is_infinity() || number.as_double() == 0) return number; // 3. If n < 1𝔽 and n > +0𝔽, return +0𝔽. // 4. If n < -0𝔽 and n > -1𝔽, return -0𝔽. // 5. Return the integral Number nearest n in the direction of +0𝔽. return Value(number.as_double() < 0 ? ::ceil(number.as_double()) : ::floor(number.as_double())); } struct TwoSumResult { double hi; double lo; }; static TwoSumResult two_sum(double x, double y) { double hi = x + y; double lo = y - (hi - x); return { hi, lo }; } // https://tc39.es/proposal-math-sum/#sec-math.sumprecise ThrowCompletionOr MathObject::sum_precise_impl(VM& vm, Value iterable) { constexpr double MAX_DOUBLE = 1.79769313486231570815e+308; // std::numeric_limits::max() constexpr double PENULTIMATE_DOUBLE = 1.79769313486231550856e+308; // std::nextafter(DBL_MAX, 0) constexpr double MAX_ULP = MAX_DOUBLE - PENULTIMATE_DOUBLE; constexpr double POW_2_1023 = 8.98846567431158e+307; // 2^1023 // 1. Perform ? RequireObjectCoercible(items). TRY(require_object_coercible(vm, iterable)); // 2. Let iteratorRecord be ? GetIterator(items, sync). auto using_iterator = TRY(iterable.get_method(vm, vm.well_known_symbol_iterator())); if (!using_iterator) return vm.throw_completion(ErrorType::NotIterable, iterable.to_string_without_side_effects()); auto iterator = TRY(get_iterator_from_method(vm, iterable, *using_iterator)); enum State { MinusZero, PlusInfinity, MinusInfinity, NotANumber, Finite }; // 3. Let state be minus-zero. State state = State::MinusZero; // 4. Let sum be 0. // 5. Let count be 0. double overflow = 0.0; u64 count = 0; Vector partials; // 6. Let next be not-started. // 7. Repeat, while next is not done for (;;) { // a. Set next to ? IteratorStepValue(iteratorRecord). auto next = TRY(iterator_step_value(vm, iterator)); if (!next.has_value()) break; // If next is not done, then // i. Set count to count + 1. count++; // ii. If count ≥ 2**53, then // 1. Let error be ThrowCompletion(a newly created RangeError object). // 2. Return ? IteratorClose(iteratorRecord, error). if (count >= (1ULL << 53)) return iterator_close(vm, iterator, vm.throw_completion(ErrorType::ArrayMaxSize)); // iii. NOTE: The above case is not expected to be reached in practice and is included only so that implementations may rely on inputs being // "reasonably sized" without violating this specification. // iv. If next is not a Number, then auto value = next.value(); if (!value.is_number()) // 1. Let error be ThrowCompletion(a newly created TypeError object). // 2. Return ? IteratorClose(iteratorRecord, error). return iterator_close(vm, iterator, vm.throw_completion(ErrorType::IsNotA, value.to_string_without_side_effects(), "number")); // v. Let n be next. auto n = value.as_double(); // vi. If state is not not-a-number, then if (state != State::NotANumber) { // 1. If n is NaN, then if (isnan(n)) { // a. Set state to not-a-number. state = State::NotANumber; } // 2. Else if n is +∞𝔽, then else if (Value(n).is_positive_infinity()) { // a. If state is minus-infinity, set state to not-a-number. // b. Else, set state to plus-infinity. state = (state == State::MinusInfinity) ? State::NotANumber : State::PlusInfinity; } // 3. Else if n is -∞𝔽, then else if (Value(n).is_negative_infinity()) { // a. If state is plus-infinity, set state to not-a-number. // b. Else, set state to minus-infinity. state = (state == State::PlusInfinity) ? State::NotANumber : State::MinusInfinity; } // 4. Else if n is not -0𝔽 and state is either minus-zero or finite, then else if (!Value(n).is_negative_zero() && (state == State::MinusZero || state == State::Finite)) { // a. Set state to finite. state = State::Finite; // b. Set sum to sum + ℝ(n). double x = n; size_t used_partials = 0; for (size_t i = 0; i < partials.size(); i++) { double y = partials[i]; if (AK::abs(x) < AK::abs(y)) swap(x, y); TwoSumResult result = two_sum(x, y); double hi = result.hi; double lo = result.lo; if (isinf(hi)) { double sign = signbit(hi) ? -1.0 : 1.0; overflow += sign; if (AK::abs(overflow) >= (1ULL << 53)) return vm.throw_completion(ErrorType::MathSumPreciseOverflow); x = (x - sign * POW_2_1023) - sign * POW_2_1023; if (AK::abs(x) < AK::abs(y)) swap(x, y); result = two_sum(x, y); hi = result.hi; lo = result.lo; } if (lo != 0.0) { partials[used_partials++] = lo; } x = hi; } partials.resize(used_partials); if (x != 0.0) { partials.append(x); } } } } // 8. If state is not-a-number, return NaN. if (state == State::NotANumber) return js_nan(); // 9. If state is plus-infinity, return +∞𝔽. if (state == State::PlusInfinity) return js_infinity(); // 10. If state is minus-infinity, return -∞𝔽. if (state == State::MinusInfinity) return js_negative_infinity(); // 11. If state is minus-zero, return -0𝔽. if (state == State::MinusZero) return Value(-0.0); // 12. Return 𝔽(sum). int n = partials.size() - 1; double hi = 0.0; double lo = 0.0; if (overflow != 0.0) { double next = n >= 0 ? partials[n] : 0.0; n--; if (AK::abs(overflow) > 1.0 || (overflow > 0.0 && next > 0.0) || (overflow < 0.0 && next < 0.0)) { return overflow > 0.0 ? js_infinity() : js_negative_infinity(); } TwoSumResult result = two_sum(overflow * POW_2_1023, next / 2.0); hi = result.hi; lo = result.lo * 2.0; if (isinf(hi * 2.0)) { if (hi > 0.0) { if (hi == POW_2_1023 && lo == -(MAX_ULP / 2.0) && n >= 0 && partials[n] < 0.0) { return Value(MAX_DOUBLE); } return js_infinity(); } else { if (hi == -POW_2_1023 && lo == (MAX_ULP / 2.0) && n >= 0 && partials[n] > 0.0) { return Value(-MAX_DOUBLE); } return js_negative_infinity(); } } if (lo != 0.0) { partials[n + 1] = lo; n++; lo = 0.0; } hi *= 2.0; } while (n >= 0) { double x = hi; double y = partials[n]; n--; TwoSumResult result = two_sum(x, y); hi = result.hi; lo = result.lo; if (lo != 0.0) { break; } } if (n >= 0 && ((lo < 0.0 && partials[n] < 0.0) || (lo > 0.0 && partials[n] > 0.0))) { double y = lo * 2.0; double x = hi + y; double yr = x - hi; if (y == yr) { hi = x; } } return Value(hi); } // https://tc39.es/proposal-math-sum/#sec-math.sumprecise JS_DEFINE_NATIVE_FUNCTION(MathObject::sumPrecise) { return sum_precise_impl(vm, vm.argument(0)); } }