ladybird/AK/DoublyLinkedList.h
Ali Mohammad Pur bf4c436ef3 AK: Add some higher-level operations to DoublyLinkedList<T>
This also adds a node cache as allocation/deallocation was showing up in
my profiles; disabled by default to keep the old behaviour.
2025-08-08 12:54:06 +02:00

313 lines
7.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Error.h>
#include <AK/Find.h>
#include <AK/StdLibExtras.h>
namespace AK {
template<typename ListType, typename ElementType>
class DoublyLinkedListIterator {
public:
bool operator!=(DoublyLinkedListIterator const& other) const { return m_node != other.m_node; }
bool operator==(DoublyLinkedListIterator const& other) const { return m_node == other.m_node; }
DoublyLinkedListIterator& operator++()
{
m_node = m_node->next;
return *this;
}
ElementType& operator*() { return m_node->value(); }
ElementType* operator->() { return &m_node->value(); }
[[nodiscard]] bool is_end() const { return !m_node; }
static DoublyLinkedListIterator universal_end() { return DoublyLinkedListIterator(nullptr); }
private:
friend ListType;
explicit DoublyLinkedListIterator(typename ListType::Node* node)
: m_node(node)
{
}
typename ListType::Node* m_node;
};
template<typename T, size_t node_cache_size>
class DoublyLinkedList {
private:
struct Node {
template<typename U>
explicit Node(U&& v)
{
new (m_value) T(forward<U>(v));
static_assert(
requires { T(v); }, "Conversion operator is missing.");
}
T const& value() const { return *bit_cast<T const*>(&m_value); }
T& value() { return *bit_cast<T*>(&m_value); }
Node* next { nullptr };
Node* prev { nullptr };
private:
alignas(T) u8 m_value[sizeof(T)];
};
public:
DoublyLinkedList() = default;
~DoublyLinkedList()
{
clear();
if constexpr (node_cache_size > 0) {
for (size_t i = 0; i < m_node_cache.used_count; ++i)
delete m_node_cache.nodes[i];
m_node_cache.used_count = 0;
}
}
[[nodiscard]] bool is_empty() const { return !m_head; }
void clear()
{
for (auto* node = m_head; node;) {
auto* next = node->next;
drop_node(node);
node = next;
}
m_head = nullptr;
m_tail = nullptr;
m_size = 0;
}
[[nodiscard]] T& first()
{
VERIFY(m_head);
return m_head->value();
}
[[nodiscard]] T const& first() const
{
VERIFY(m_head);
return m_head->value();
}
[[nodiscard]] T& last()
{
VERIFY(m_head);
return m_tail->value();
}
[[nodiscard]] T const& last() const
{
VERIFY(m_head);
return m_tail->value();
}
[[nodiscard]] T& unchecked_last()
{
return m_tail->value();
}
[[nodiscard]] T const& unchecked_last() const
{
return m_tail->value();
}
template<typename U>
ErrorOr<void> try_append(U&& value)
{
static_assert(
requires { T(value); }, "Conversion operator is missing.");
auto* node = make_node(forward<U>(value));
if (!node)
return Error::from_errno(ENOMEM);
m_size += 1;
if (!m_head) {
VERIFY(!m_tail);
m_head = node;
m_tail = node;
return {};
}
VERIFY(m_tail);
VERIFY(!node->next);
m_tail->next = node;
node->prev = m_tail;
m_tail = node;
return {};
}
template<typename U>
ErrorOr<void> try_prepend(U&& value)
{
static_assert(IsSame<T, U>);
auto* node = make_node(forward<U>(value));
if (!node)
return Error::from_errno(ENOMEM);
m_size += 1;
if (!m_head) {
VERIFY(!m_tail);
m_head = node;
m_tail = node;
return {};
}
VERIFY(m_tail);
VERIFY(!node->prev);
m_head->prev = node;
node->next = m_head;
m_head = node;
return {};
}
template<typename U>
void append(U&& value)
{
MUST(try_append(forward<U>(value)));
}
template<typename U>
void prepend(U&& value)
{
MUST(try_prepend(forward<U>(value)));
}
[[nodiscard]] bool contains_slow(T const& value) const
{
return find(value) != end();
}
using Iterator = DoublyLinkedListIterator<DoublyLinkedList, T>;
friend Iterator;
Iterator begin() { return Iterator(m_head); }
Iterator end() { return Iterator::universal_end(); }
using ConstIterator = DoublyLinkedListIterator<DoublyLinkedList const, T const>;
friend ConstIterator;
ConstIterator begin() const { return ConstIterator(m_head); }
ConstIterator end() const { return ConstIterator::universal_end(); }
ConstIterator find(T const& value) const
{
return AK::find(begin(), end(), value);
}
Iterator find(T const& value)
{
return AK::find(begin(), end(), value);
}
void remove(Iterator it)
{
VERIFY(it.m_node);
auto* node = it.m_node;
if (node->prev) {
VERIFY(node != m_head);
node->prev->next = node->next;
} else {
VERIFY(node == m_head);
m_head = node->next;
}
if (node->next) {
VERIFY(node != m_tail);
node->next->prev = node->prev;
} else {
VERIFY(node == m_tail);
m_tail = node->prev;
}
m_size -= 1;
drop_node(node);
}
T take_first()
{
VERIFY(m_head);
auto value = move(m_head->value());
auto* old_head = m_head;
m_head = m_head->next;
if (m_head)
m_head->prev = nullptr;
else
m_tail = nullptr; // We removed the only element, no more elements left.
drop_node(old_head);
m_size -= 1;
return value;
}
T take_last()
{
VERIFY(m_tail);
auto value = move(m_tail->value());
auto* old_tail = m_tail;
m_tail = m_tail->prev;
if (m_tail)
m_tail->next = nullptr;
else
m_head = nullptr; // We removed the only element, no more elements left.
drop_node(old_tail);
m_size -= 1;
return value;
}
size_t size() const { return m_size; }
template<typename F>
void ensure_capacity(size_t new_capacity, F make_default_value = [] -> T { return T {}; })
{
if constexpr (node_cache_size == 0)
return;
if (m_size >= new_capacity)
return;
auto const rest = min(new_capacity - m_size, node_cache_size);
for (size_t i = m_node_cache.used_count; i <= rest; ++i)
m_node_cache.nodes[m_node_cache.used_count++] = make_node(make_default_value());
}
private:
void drop_node(Node* node)
{
if constexpr (node_cache_size > 0) {
if (m_node_cache.used_count + 1 < node_cache_size) {
node->value().~T();
m_node_cache.nodes[m_node_cache.used_count++] = node;
return;
}
}
node->value().~T();
delete node;
}
template<typename... Args>
Node* make_node(Args&&... args)
{
if constexpr (node_cache_size > 0) {
if (m_node_cache.used_count > 0) {
auto* node = m_node_cache.nodes[--m_node_cache.used_count];
new (node) Node(forward<Args>(args)...);
return node;
}
}
return new (nothrow) Node(forward<Args>(args)...);
}
Node* m_head { nullptr };
Node* m_tail { nullptr };
size_t m_size { 0 };
struct NonemptyNodeCache {
Array<Node*, node_cache_size> nodes;
size_t used_count { 0 };
};
using NodeCache = Conditional<(node_cache_size > 0), NonemptyNodeCache, Empty>;
NO_UNIQUE_ADDRESS NodeCache m_node_cache;
};
}
#if USING_AK_GLOBALLY
using AK::DoublyLinkedList;
#endif