mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-25 14:05:15 +00:00
I had to change PhysicalPage around a bit for this. Physical pages can now be instantiated for any arbitrary physical address without worrying that such pages end up in the kernel page allocator when released. Most of the pieces were already in place, I just glued everything together.
224 lines
5.4 KiB
C++
224 lines
5.4 KiB
C++
/*
|
|
* Really really *really* Q&D malloc() and free() implementations
|
|
* just to get going. Don't ever let anyone see this shit. :^)
|
|
*/
|
|
|
|
#include "types.h"
|
|
#include "kmalloc.h"
|
|
#include "StdLib.h"
|
|
#include "i386.h"
|
|
#include "system.h"
|
|
#include "Process.h"
|
|
#include "Scheduler.h"
|
|
#include <AK/Assertions.h>
|
|
|
|
#define SANITIZE_KMALLOC
|
|
|
|
struct [[gnu::packed]] allocation_t {
|
|
dword start;
|
|
dword nchunk;
|
|
};
|
|
|
|
#define CHUNK_SIZE 128
|
|
#define POOL_SIZE (1024 * 1024)
|
|
|
|
#define ETERNAL_BASE_PHYSICAL 0x100000
|
|
#define ETERNAL_RANGE_SIZE 0x100000
|
|
|
|
#define BASE_PHYSICAL 0x200000
|
|
#define RANGE_SIZE 0x100000
|
|
|
|
static byte alloc_map[POOL_SIZE / CHUNK_SIZE / 8];
|
|
|
|
volatile size_t sum_alloc = 0;
|
|
volatile size_t sum_free = POOL_SIZE;
|
|
volatile size_t kmalloc_sum_eternal = 0;
|
|
|
|
static byte* s_next_eternal_ptr;
|
|
static byte* s_end_of_eternal_range;
|
|
|
|
bool is_kmalloc_address(const void* ptr)
|
|
{
|
|
if (ptr >= (byte*)ETERNAL_BASE_PHYSICAL && ptr < s_next_eternal_ptr)
|
|
return true;
|
|
return (dword)ptr >= BASE_PHYSICAL && (dword)ptr <= (BASE_PHYSICAL + POOL_SIZE);
|
|
}
|
|
|
|
void kmalloc_init()
|
|
{
|
|
memset(&alloc_map, 0, sizeof(alloc_map));
|
|
memset((void *)BASE_PHYSICAL, 0, POOL_SIZE);
|
|
|
|
kmalloc_sum_eternal = 0;
|
|
sum_alloc = 0;
|
|
sum_free = POOL_SIZE;
|
|
|
|
s_next_eternal_ptr = (byte*)ETERNAL_BASE_PHYSICAL;
|
|
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
|
|
}
|
|
|
|
void* kmalloc_eternal(size_t size)
|
|
{
|
|
void* ptr = s_next_eternal_ptr;
|
|
s_next_eternal_ptr += size;
|
|
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
|
|
kmalloc_sum_eternal += size;
|
|
return ptr;
|
|
}
|
|
|
|
void* kmalloc_aligned(size_t size, size_t alignment)
|
|
{
|
|
void* ptr = kmalloc(size + alignment + sizeof(void*));
|
|
dword max_addr = (dword)ptr + alignment;
|
|
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
|
|
|
|
((void**)aligned_ptr)[-1] = ptr;
|
|
return aligned_ptr;
|
|
}
|
|
|
|
void kfree_aligned(void* ptr)
|
|
{
|
|
kfree(((void**)ptr)[-1]);
|
|
}
|
|
|
|
void* kmalloc_page_aligned(size_t size)
|
|
{
|
|
void* ptr = kmalloc_aligned(size, PAGE_SIZE);
|
|
dword d = (dword)ptr;
|
|
ASSERT((d & PAGE_MASK) == d);
|
|
return ptr;
|
|
}
|
|
|
|
void* kmalloc_impl(dword size)
|
|
{
|
|
InterruptDisabler disabler;
|
|
|
|
dword chunks_needed, chunks_here, first_chunk;
|
|
dword real_size;
|
|
dword i, j, k;
|
|
|
|
/* We need space for the allocation_t structure at the head of the block. */
|
|
real_size = size + sizeof(allocation_t);
|
|
|
|
if (sum_free < real_size) {
|
|
kprintf("%s<%u> kmalloc(): PANIC! Out of memory (sucks, dude)\nsum_free=%u, real_size=%u\n", current->name().characters(), current->pid(), sum_free, real_size);
|
|
hang();
|
|
}
|
|
|
|
chunks_needed = real_size / CHUNK_SIZE;
|
|
if( real_size % CHUNK_SIZE )
|
|
chunks_needed++;
|
|
|
|
chunks_here = 0;
|
|
first_chunk = 0;
|
|
|
|
for( i = 0; i < (POOL_SIZE / CHUNK_SIZE / 8); ++i )
|
|
{
|
|
if (alloc_map[i] == 0xff) {
|
|
// Skip over completely full bucket.
|
|
chunks_here = 0;
|
|
continue;
|
|
}
|
|
// FIXME: This scan can be optimized further with LZCNT.
|
|
for( j = 0; j < 8; ++j )
|
|
{
|
|
if( !(alloc_map[i] & (1<<j)) )
|
|
{
|
|
if( chunks_here == 0 )
|
|
{
|
|
/* Mark where potential allocation starts. */
|
|
first_chunk = i * 8 + j;
|
|
}
|
|
|
|
chunks_here++;
|
|
|
|
if( chunks_here == chunks_needed )
|
|
{
|
|
auto* a = (allocation_t *)(BASE_PHYSICAL + (first_chunk * CHUNK_SIZE));
|
|
byte *ptr = (byte *)a;
|
|
ptr += sizeof(allocation_t);
|
|
a->nchunk = chunks_needed;
|
|
a->start = first_chunk;
|
|
|
|
for( k = first_chunk; k < (first_chunk + chunks_needed); ++k )
|
|
{
|
|
alloc_map[k / 8] |= 1 << (k % 8);
|
|
}
|
|
|
|
sum_alloc += a->nchunk * CHUNK_SIZE;
|
|
sum_free -= a->nchunk * CHUNK_SIZE;
|
|
#ifdef SANITIZE_KMALLOC
|
|
memset(ptr, 0xbb, (a->nchunk * CHUNK_SIZE) - sizeof(allocation_t));
|
|
#endif
|
|
return ptr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* This is in use, so restart chunks_here counter. */
|
|
chunks_here = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
kprintf("%s<%u> kmalloc(): PANIC! Out of memory (no suitable block for size %u)\n", current->name().characters(), current->pid(), size);
|
|
hang();
|
|
}
|
|
|
|
void kfree(void *ptr)
|
|
{
|
|
if( !ptr )
|
|
return;
|
|
|
|
InterruptDisabler disabler;
|
|
|
|
allocation_t *a = (allocation_t *)((((byte *)ptr) - sizeof(allocation_t)));
|
|
|
|
#if 0
|
|
dword hdr = (dword)a;
|
|
dword mhdr = hdr & ~0x7;
|
|
kprintf("hdr / mhdr %p / %p\n", hdr, mhdr);
|
|
ASSERT(hdr == mhdr);
|
|
#endif
|
|
|
|
for (dword k = a->start; k < (a->start + a->nchunk); ++k) {
|
|
alloc_map[k / 8] &= ~(1 << (k % 8));
|
|
}
|
|
|
|
sum_alloc -= a->nchunk * CHUNK_SIZE;
|
|
sum_free += a->nchunk * CHUNK_SIZE;
|
|
|
|
#ifdef SANITIZE_KMALLOC
|
|
memset(a, 0xaa, a->nchunk * CHUNK_SIZE);
|
|
#endif
|
|
}
|
|
|
|
void* operator new(size_t size)
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void* operator new[](size_t size)
|
|
{
|
|
return kmalloc(size);
|
|
}
|
|
|
|
void operator delete(void* ptr)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete[](void* ptr)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete(void* ptr, unsigned int)
|
|
{
|
|
return kfree(ptr);
|
|
}
|
|
|
|
void operator delete[](void* ptr, unsigned int)
|
|
{
|
|
return kfree(ptr);
|
|
}
|