ladybird/Kernel/Storage/ATA/GenericIDE/Channel.cpp
Liav A 0810c1b972 Kernel/Storage: Introduce basic abstraction layer for ATA components
This abstraction layer is mainly for ATA ports (AHCI ports, IDE ports).
The goal is to create a convenient and flexible framework so it's
possible to expand to support other types of controller (e.g. Intel PIIX
and ICH IDE controllers) and to abstract operations that are possible on
each component.

Currently only the ATA IDE code is affected by this, making it much
cleaner and readable - the ATA bus mastering code is moved to the
ATAPort code so more implementations in the near future can take
advantage of such functionality easily.

In addition to that, the hierarchy of the ATA IDE code resembles more of
the SATA AHCI code now, which means the IDEChannel class is solely
responsible for getting interrupts, passing them for further processing
in the ATAPort code to take care of the rest of the handling logic.
2022-07-19 11:07:34 +01:00

333 lines
12 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Process.h>
#include <Kernel/Sections.h>
#include <Kernel/Storage/ATA/ATADiskDevice.h>
#include <Kernel/Storage/ATA/Definitions.h>
#include <Kernel/Storage/ATA/GenericIDE/Channel.h>
#include <Kernel/Storage/ATA/GenericIDE/Controller.h>
#include <Kernel/WorkQueue.h>
namespace Kernel {
#define PATA_PRIMARY_IRQ 14
#define PATA_SECONDARY_IRQ 15
UNMAP_AFTER_INIT NonnullRefPtr<IDEChannel> IDEChannel::create(IDEController const& controller, IOAddressGroup io_group, ChannelType type)
{
auto ata_identify_data_buffer = KBuffer::try_create_with_size("ATA Identify Page"sv, 4096, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value();
return adopt_ref(*new IDEChannel(controller, io_group, type, move(ata_identify_data_buffer)));
}
UNMAP_AFTER_INIT NonnullRefPtr<IDEChannel> IDEChannel::create(IDEController const& controller, u8 irq, IOAddressGroup io_group, ChannelType type)
{
auto ata_identify_data_buffer = KBuffer::try_create_with_size("ATA Identify Page"sv, 4096, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value();
return adopt_ref(*new IDEChannel(controller, irq, io_group, type, move(ata_identify_data_buffer)));
}
StringView IDEChannel::channel_type_string() const
{
if (m_channel_type == ChannelType::Primary)
return "Primary"sv;
return "Secondary"sv;
}
bool IDEChannel::select_device_and_wait_until_not_busy(DeviceType device_type, size_t milliseconds_timeout)
{
IO::delay(20);
u8 slave = device_type == DeviceType::Slave;
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | (slave << 4)); // First, we need to select the drive itself
IO::delay(20);
size_t time_elapsed = 0;
while (m_io_group.control_base().in<u8>() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) {
IO::delay(1000);
time_elapsed++;
}
return time_elapsed <= milliseconds_timeout;
}
ErrorOr<void> IDEChannel::port_phy_reset()
{
MutexLocker locker(m_lock);
SpinlockLocker hard_locker(m_hard_lock);
// reset the channel
u8 device_control = m_io_group.control_base().in<u8>();
// Wait 30 milliseconds
IO::delay(30000);
m_io_group.control_base().out<u8>(device_control | (1 << 2));
// Wait 30 milliseconds
IO::delay(30000);
m_io_group.control_base().out<u8>(device_control);
// Wait up to 30 seconds before failing
if (!select_device_and_wait_until_not_busy(DeviceType::Master, 30000)) {
dbgln("IDEChannel: reset failed, busy flag on master stuck");
return Error::from_errno(EBUSY);
}
// Wait up to 30 seconds before failing
if (!select_device_and_wait_until_not_busy(DeviceType::Slave, 30000)) {
dbgln("IDEChannel: reset failed, busy flag on slave stuck");
return Error::from_errno(EBUSY);
}
return {};
}
ErrorOr<void> IDEChannel::allocate_resources_for_pci_ide_controller(Badge<PCIIDEController>, bool force_pio)
{
return allocate_resources(force_pio);
}
ErrorOr<void> IDEChannel::allocate_resources_for_isa_ide_controller(Badge<ISAIDEController>)
{
return allocate_resources(false);
}
UNMAP_AFTER_INIT ErrorOr<void> IDEChannel::allocate_resources(bool force_pio)
{
dbgln_if(PATA_DEBUG, "IDEChannel: {} IO base: {}", channel_type_string(), m_io_group.io_base());
dbgln_if(PATA_DEBUG, "IDEChannel: {} control base: {}", channel_type_string(), m_io_group.control_base());
if (m_io_group.bus_master_base().has_value())
dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base: {}", channel_type_string(), m_io_group.bus_master_base().value());
else
dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base disabled", channel_type_string());
if (!force_pio) {
m_dma_enabled = true;
VERIFY(m_io_group.bus_master_base().has_value());
// Let's try to set up DMA transfers.
m_prdt_region = TRY(MM.allocate_dma_buffer_page("IDE PRDT"sv, Memory::Region::Access::ReadWrite, m_prdt_page));
VERIFY(!m_prdt_page.is_null());
m_dma_buffer_region = TRY(MM.allocate_dma_buffer_page("IDE DMA region"sv, Memory::Region::Access::ReadWrite, m_dma_buffer_page));
VERIFY(!m_dma_buffer_page.is_null());
prdt().end_of_table = 0x8000;
// clear bus master interrupt status
m_io_group.bus_master_base().value().offset(2).out<u8>(m_io_group.bus_master_base().value().offset(2).in<u8>() | 4);
}
return {};
}
UNMAP_AFTER_INIT IDEChannel::IDEChannel(IDEController const& controller, u8 irq, IOAddressGroup io_group, ChannelType type, NonnullOwnPtr<KBuffer> ata_identify_data_buffer)
: ATAPort(controller, (type == ChannelType::Primary ? 0 : 1), move(ata_identify_data_buffer))
, IRQHandler(irq)
, m_channel_type(type)
, m_io_group(io_group)
, m_parent_controller(controller)
{
}
UNMAP_AFTER_INIT IDEChannel::IDEChannel(IDEController const& controller, IOAddressGroup io_group, ChannelType type, NonnullOwnPtr<KBuffer> ata_identify_data_buffer)
: ATAPort(controller, (type == ChannelType::Primary ? 0 : 1), move(ata_identify_data_buffer))
, IRQHandler(type == ChannelType::Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ)
, m_channel_type(type)
, m_io_group(io_group)
, m_parent_controller(controller)
{
}
UNMAP_AFTER_INIT IDEChannel::~IDEChannel() = default;
bool IDEChannel::handle_irq(RegisterState const&)
{
auto result = handle_interrupt_after_dma_transaction();
// FIXME: Propagate errors properly
VERIFY(!result.is_error());
return result.release_value();
}
ErrorOr<void> IDEChannel::stop_busmastering()
{
VERIFY(m_lock.is_locked());
VERIFY(m_io_group.bus_master_base().has_value());
m_io_group.bus_master_base().value().out<u8>(0);
return {};
}
ErrorOr<void> IDEChannel::start_busmastering(TransactionDirection direction)
{
VERIFY(m_lock.is_locked());
VERIFY(m_io_group.bus_master_base().has_value());
m_io_group.bus_master_base().value().out<u8>(direction != TransactionDirection::Write ? 0x9 : 0x1);
return {};
}
ErrorOr<void> IDEChannel::force_busmastering_status_clean()
{
VERIFY(m_lock.is_locked());
VERIFY(m_io_group.bus_master_base().has_value());
m_io_group.bus_master_base().value().offset(2).out<u8>(m_io_group.bus_master_base().value().offset(2).in<u8>() | 4);
return {};
}
ErrorOr<u8> IDEChannel::busmastering_status()
{
VERIFY(m_io_group.bus_master_base().has_value());
return m_io_group.bus_master_base().value().offset(2).in<u8>();
}
ErrorOr<void> IDEChannel::prepare_transaction_with_busmastering(TransactionDirection direction, PhysicalAddress prdt_buffer)
{
VERIFY(m_lock.is_locked());
m_io_group.bus_master_base().value().offset(4).out<u32>(prdt_buffer.get());
m_io_group.bus_master_base().value().out<u8>(direction != TransactionDirection::Write ? 0x8 : 0);
// Turn on "Interrupt" and "Error" flag. The error flag should be cleared by hardware.
m_io_group.bus_master_base().value().offset(2).out<u8>(m_io_group.bus_master_base().value().offset(2).in<u8>() | 0x6);
return {};
}
ErrorOr<void> IDEChannel::initiate_transaction(TransactionDirection)
{
VERIFY(m_lock.is_locked());
return {};
}
ErrorOr<u8> IDEChannel::task_file_status()
{
VERIFY(m_lock.is_locked());
return m_io_group.control_base().in<u8>();
}
ErrorOr<u8> IDEChannel::task_file_error()
{
VERIFY(m_lock.is_locked());
return m_io_group.io_base().offset(ATA_REG_ERROR).in<u8>();
}
ErrorOr<bool> IDEChannel::detect_presence_on_selected_device()
{
VERIFY(m_lock.is_locked());
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0x55);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0xAA);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0xAA);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0x55);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0x55);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0xAA);
auto nsectors_value = m_io_group.io_base().offset(ATA_REG_SECCOUNT0).in<u8>();
auto lba0 = m_io_group.io_base().offset(ATA_REG_LBA0).in<u8>();
if (lba0 == 0xAA && nsectors_value == 0x55)
return true;
return false;
}
ErrorOr<void> IDEChannel::wait_if_busy_until_timeout(size_t timeout_in_milliseconds)
{
size_t time_elapsed = 0;
while (m_io_group.control_base().in<u8>() & ATA_SR_BSY && time_elapsed <= timeout_in_milliseconds) {
IO::delay(1000);
time_elapsed++;
}
if (time_elapsed <= timeout_in_milliseconds)
return {};
return Error::from_errno(EBUSY);
}
ErrorOr<void> IDEChannel::force_clear_interrupts()
{
VERIFY(m_lock.is_locked());
m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
return {};
}
ErrorOr<void> IDEChannel::load_taskfile_into_registers(ATAPort::TaskFile const& task_file, LBAMode lba_mode, size_t completion_timeout_in_milliseconds)
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
u8 head = 0;
if (lba_mode == LBAMode::FortyEightBit) {
head = 0;
} else if (lba_mode == LBAMode::TwentyEightBit) {
head = (task_file.lba_high[0] & 0x0F);
}
// Note: Preserve the selected drive, always use LBA addressing
auto driver_register = ((m_io_group.io_base().offset(ATA_REG_HDDEVSEL).in<u8>() & (1 << 4)) | (head | (1 << 5) | (1 << 6)));
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(driver_register);
IO::delay(50);
if (lba_mode == LBAMode::FortyEightBit) {
m_io_group.io_base().offset(ATA_REG_SECCOUNT1).out<u8>((task_file.count >> 8) & 0xFF);
m_io_group.io_base().offset(ATA_REG_LBA3).out<u8>(task_file.lba_high[0]);
m_io_group.io_base().offset(ATA_REG_LBA4).out<u8>(task_file.lba_high[1]);
m_io_group.io_base().offset(ATA_REG_LBA5).out<u8>(task_file.lba_high[2]);
}
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(task_file.count & 0xFF);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(task_file.lba_low[0]);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(task_file.lba_low[1]);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(task_file.lba_low[2]);
// FIXME: Set a timeout here?
size_t time_elapsed = 0;
for (;;) {
if (time_elapsed > completion_timeout_in_milliseconds)
return Error::from_errno(EBUSY);
// FIXME: Use task_file_status method
auto status = m_io_group.control_base().in<u8>();
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY))
break;
IO::delay(1000);
time_elapsed++;
}
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(task_file.command);
return {};
}
ErrorOr<void> IDEChannel::device_select(size_t device_index)
{
VERIFY(m_lock.is_locked());
if (device_index > 1)
return Error::from_errno(EINVAL);
IO::delay(20);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | ((device_index) << 4));
IO::delay(20);
return {};
}
ErrorOr<void> IDEChannel::enable_interrupts()
{
VERIFY(m_lock.is_locked());
m_io_group.control_base().out<u8>(0);
m_interrupts_enabled = true;
return {};
}
ErrorOr<void> IDEChannel::disable_interrupts()
{
VERIFY(m_lock.is_locked());
m_io_group.control_base().out<u8>(1 << 1);
m_interrupts_enabled = false;
return {};
}
ErrorOr<void> IDEChannel::read_pio_data_to_buffer(UserOrKernelBuffer& buffer, size_t block_offset, size_t words_count)
{
VERIFY(m_lock.is_locked());
VERIFY(words_count == 256);
for (u32 i = 0; i < 256; ++i) {
u16 data = m_io_group.io_base().offset(ATA_REG_DATA).in<u16>();
// FIXME: Don't assume 512 bytes sector
TRY(buffer.write(&data, block_offset * 512 + (i * 2), 2));
}
return {};
}
ErrorOr<void> IDEChannel::write_pio_data_from_buffer(UserOrKernelBuffer const& buffer, size_t block_offset, size_t words_count)
{
VERIFY(m_lock.is_locked());
VERIFY(words_count == 256);
for (u32 i = 0; i < 256; ++i) {
u16 buf;
// FIXME: Don't assume 512 bytes sector
TRY(buffer.read(&buf, block_offset * 512 + (i * 2), 2));
IO::out16(m_io_group.io_base().offset(ATA_REG_DATA).get(), buf);
}
return {};
}
}