mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-25 14:05:15 +00:00
This is done by just using the built-in ceiling and subtracting from the result if its in the 0.5 range.
630 lines
20 KiB
C++
630 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
|
|
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Function.h>
|
|
#include <AK/Random.h>
|
|
#include <LibJS/Runtime/GlobalObject.h>
|
|
#include <LibJS/Runtime/MathObject.h>
|
|
#include <math.h>
|
|
|
|
namespace JS {
|
|
|
|
MathObject::MathObject(GlobalObject& global_object)
|
|
: Object(*global_object.object_prototype())
|
|
{
|
|
}
|
|
|
|
void MathObject::initialize(GlobalObject& global_object)
|
|
{
|
|
auto& vm = this->vm();
|
|
Object::initialize(global_object);
|
|
u8 attr = Attribute::Writable | Attribute::Configurable;
|
|
define_native_function(vm.names.abs, abs, 1, attr);
|
|
define_native_function(vm.names.random, random, 0, attr);
|
|
define_native_function(vm.names.sqrt, sqrt, 1, attr);
|
|
define_native_function(vm.names.floor, floor, 1, attr);
|
|
define_native_function(vm.names.ceil, ceil, 1, attr);
|
|
define_native_function(vm.names.round, round, 1, attr);
|
|
define_native_function(vm.names.max, max, 2, attr);
|
|
define_native_function(vm.names.min, min, 2, attr);
|
|
define_native_function(vm.names.trunc, trunc, 1, attr);
|
|
define_native_function(vm.names.sin, sin, 1, attr);
|
|
define_native_function(vm.names.cos, cos, 1, attr);
|
|
define_native_function(vm.names.tan, tan, 1, attr);
|
|
define_native_function(vm.names.pow, pow, 2, attr);
|
|
define_native_function(vm.names.exp, exp, 1, attr);
|
|
define_native_function(vm.names.expm1, expm1, 1, attr);
|
|
define_native_function(vm.names.sign, sign, 1, attr);
|
|
define_native_function(vm.names.clz32, clz32, 1, attr);
|
|
define_native_function(vm.names.acos, acos, 1, attr);
|
|
define_native_function(vm.names.acosh, acosh, 1, attr);
|
|
define_native_function(vm.names.asin, asin, 1, attr);
|
|
define_native_function(vm.names.asinh, asinh, 1, attr);
|
|
define_native_function(vm.names.atan, atan, 1, attr);
|
|
define_native_function(vm.names.atanh, atanh, 1, attr);
|
|
define_native_function(vm.names.log1p, log1p, 1, attr);
|
|
define_native_function(vm.names.cbrt, cbrt, 1, attr);
|
|
define_native_function(vm.names.atan2, atan2, 2, attr);
|
|
define_native_function(vm.names.fround, fround, 1, attr);
|
|
define_native_function(vm.names.hypot, hypot, 2, attr);
|
|
define_native_function(vm.names.imul, imul, 2, attr);
|
|
define_native_function(vm.names.log, log, 1, attr);
|
|
define_native_function(vm.names.log2, log2, 1, attr);
|
|
define_native_function(vm.names.log10, log10, 1, attr);
|
|
define_native_function(vm.names.sinh, sinh, 1, attr);
|
|
define_native_function(vm.names.cosh, cosh, 1, attr);
|
|
define_native_function(vm.names.tanh, tanh, 1, attr);
|
|
|
|
// 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
|
|
define_property(vm.names.E, Value(M_E), 0);
|
|
define_property(vm.names.LN2, Value(M_LN2), 0);
|
|
define_property(vm.names.LN10, Value(M_LN10), 0);
|
|
define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
|
|
define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
|
|
define_property(vm.names.PI, Value(M_PI), 0);
|
|
define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
|
|
define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
|
|
|
|
// 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
|
|
define_property(*vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), vm.names.Math.as_string()), Attribute::Configurable);
|
|
}
|
|
|
|
MathObject::~MathObject()
|
|
{
|
|
}
|
|
|
|
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
if (number.is_negative_zero())
|
|
return Value(0);
|
|
if (number.is_negative_infinity())
|
|
return js_infinity();
|
|
return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
|
|
}
|
|
|
|
// 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
|
|
{
|
|
#ifdef __serenity__
|
|
double r = (double)get_random<u32>() / (double)UINT32_MAX;
|
|
#else
|
|
double r = (double)rand() / (double)RAND_MAX;
|
|
#endif
|
|
return Value(r);
|
|
}
|
|
|
|
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sqrt(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::floor(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
auto number_double = number.as_double();
|
|
if (number_double < 0 && number_double > -1)
|
|
return Value(-0.f);
|
|
return Value(::ceil(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
auto value = number.as_double();
|
|
double integer = ::ceil(value);
|
|
if (integer - 0.5 > value)
|
|
integer--;
|
|
return Value(integer);
|
|
}
|
|
|
|
// 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
|
|
{
|
|
Vector<Value> coerced;
|
|
for (size_t i = 0; i < vm.argument_count(); ++i) {
|
|
auto number = vm.argument(i).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
coerced.append(number);
|
|
}
|
|
|
|
auto highest = js_negative_infinity();
|
|
for (auto& number : coerced) {
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
|
|
highest = number;
|
|
}
|
|
return highest;
|
|
}
|
|
|
|
// 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
|
|
{
|
|
Vector<Value> coerced;
|
|
for (size_t i = 0; i < vm.argument_count(); ++i) {
|
|
auto number = vm.argument(i).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
coerced.append(number);
|
|
}
|
|
|
|
auto lowest = js_infinity();
|
|
for (auto& number : coerced) {
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
|
|
lowest = number;
|
|
}
|
|
return lowest;
|
|
}
|
|
|
|
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
if (number.as_double() < 0)
|
|
return MathObject::ceil(vm, global_object);
|
|
return MathObject::floor(vm, global_object);
|
|
}
|
|
|
|
// 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sin(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::cos(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::tan(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
|
|
{
|
|
auto base = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
auto exponent = vm.argument(1).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (exponent.is_nan())
|
|
return js_nan();
|
|
if (exponent.is_positive_zero() || exponent.is_negative_zero())
|
|
return Value(1);
|
|
if (base.is_nan())
|
|
return js_nan();
|
|
if (base.is_positive_infinity())
|
|
return exponent.as_double() > 0 ? js_infinity() : Value(0);
|
|
if (base.is_negative_infinity()) {
|
|
auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
|
|
if (exponent.as_double() > 0)
|
|
return is_odd_integral_number ? js_negative_infinity() : js_infinity();
|
|
else
|
|
return is_odd_integral_number ? Value(-0.0) : Value(0);
|
|
}
|
|
if (base.is_positive_zero())
|
|
return exponent.as_double() > 0 ? Value(0) : js_infinity();
|
|
if (base.is_negative_zero()) {
|
|
auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
|
|
if (exponent.as_double() > 0)
|
|
return is_odd_integral_number ? Value(-0.0) : Value(0);
|
|
else
|
|
return is_odd_integral_number ? js_negative_infinity() : js_infinity();
|
|
}
|
|
VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
|
|
if (exponent.is_positive_infinity()) {
|
|
auto absolute_base = fabs(base.as_double());
|
|
if (absolute_base > 1)
|
|
return js_infinity();
|
|
else if (absolute_base == 1)
|
|
return js_nan();
|
|
else if (absolute_base < 1)
|
|
return Value(0);
|
|
}
|
|
if (exponent.is_negative_infinity()) {
|
|
auto absolute_base = fabs(base.as_double());
|
|
if (absolute_base > 1)
|
|
return Value(0);
|
|
else if (absolute_base == 1)
|
|
return js_nan();
|
|
else if (absolute_base < 1)
|
|
return js_infinity();
|
|
}
|
|
VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
|
|
if (base.as_double() < 0 && !exponent.is_integral_number())
|
|
return js_nan();
|
|
return Value(::pow(base.as_double(), exponent.as_double()));
|
|
}
|
|
|
|
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::exp(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::expm1(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_positive_zero())
|
|
return Value(0);
|
|
if (number.is_negative_zero())
|
|
return Value(-0.0);
|
|
if (number.as_double() > 0)
|
|
return Value(1);
|
|
if (number.as_double() < 0)
|
|
return Value(-1);
|
|
return js_nan();
|
|
}
|
|
|
|
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
|
|
return Value(32);
|
|
return Value(__builtin_clz((unsigned)number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
|
|
return js_nan();
|
|
if (number.as_double() == 1)
|
|
return Value(0);
|
|
return Value(::acos(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.as_double() < 1)
|
|
return js_nan();
|
|
return Value(::acosh(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
|
|
return number;
|
|
return Value(::asin(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
return Value(::asinh(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
|
|
return number;
|
|
if (number.is_positive_infinity())
|
|
return Value(M_PI_2);
|
|
if (number.is_negative_infinity())
|
|
return Value(-M_PI_2);
|
|
return Value(::atan(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.as_double() > 1 || number.as_double() < -1)
|
|
return js_nan();
|
|
return Value(::atanh(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.as_double() < -1)
|
|
return js_nan();
|
|
return Value(::log1p(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
return Value(::cbrt(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
|
|
{
|
|
auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
|
|
|
|
auto y = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
auto x = vm.argument(1).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
|
|
if (y.is_nan() || x.is_nan())
|
|
return js_nan();
|
|
if (y.is_positive_infinity()) {
|
|
if (x.is_positive_infinity())
|
|
return Value(M_PI_4);
|
|
else if (x.is_negative_infinity())
|
|
return Value(three_quarters_pi);
|
|
else
|
|
return Value(M_PI_2);
|
|
}
|
|
if (y.is_negative_infinity()) {
|
|
if (x.is_positive_infinity())
|
|
return Value(-M_PI_4);
|
|
else if (x.is_negative_infinity())
|
|
return Value(-three_quarters_pi);
|
|
else
|
|
return Value(-M_PI_2);
|
|
}
|
|
if (y.is_positive_zero()) {
|
|
if (x.as_double() > 0 || x.is_positive_zero())
|
|
return Value(0.0);
|
|
else
|
|
return Value(M_PI);
|
|
}
|
|
if (y.is_negative_zero()) {
|
|
if (x.as_double() > 0 || x.is_positive_zero())
|
|
return Value(-0.0);
|
|
else
|
|
return Value(-M_PI);
|
|
}
|
|
VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
|
|
if (y.as_double() > 0) {
|
|
if (x.is_positive_infinity())
|
|
return Value(0);
|
|
else if (x.is_negative_infinity())
|
|
return Value(M_PI);
|
|
else if (x.is_positive_zero() || x.is_negative_zero())
|
|
return Value(M_PI_2);
|
|
}
|
|
if (y.as_double() < 0) {
|
|
if (x.is_positive_infinity())
|
|
return Value(-0.0);
|
|
else if (x.is_negative_infinity())
|
|
return Value(-M_PI);
|
|
else if (x.is_positive_zero() || x.is_negative_zero())
|
|
return Value(-M_PI_2);
|
|
}
|
|
VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
|
|
return Value(::atan2(y.as_double(), x.as_double()));
|
|
}
|
|
|
|
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value((float)number.as_double());
|
|
}
|
|
|
|
// 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
|
|
{
|
|
Vector<Value> coerced;
|
|
for (size_t i = 0; i < vm.argument_count(); ++i) {
|
|
auto number = vm.argument(i).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
coerced.append(number);
|
|
}
|
|
|
|
for (auto& number : coerced) {
|
|
if (number.is_positive_infinity() || number.is_negative_infinity())
|
|
return js_infinity();
|
|
}
|
|
|
|
auto only_zero = true;
|
|
double sum_of_squares = 0;
|
|
for (auto& number : coerced) {
|
|
if (number.is_nan() || number.is_positive_infinity())
|
|
return number;
|
|
if (number.is_negative_infinity())
|
|
return js_infinity();
|
|
if (!number.is_positive_zero() && !number.is_negative_zero())
|
|
only_zero = false;
|
|
sum_of_squares += number.as_double() * number.as_double();
|
|
}
|
|
if (only_zero)
|
|
return Value(0);
|
|
return Value(::sqrt(sum_of_squares));
|
|
}
|
|
|
|
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
|
|
{
|
|
auto a = vm.argument(0).to_u32(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
auto b = vm.argument(1).to_u32(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
return Value(static_cast<i32>(a * b));
|
|
}
|
|
|
|
// 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.as_double() < 0)
|
|
return js_nan();
|
|
return Value(::log(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.as_double() < 0)
|
|
return js_nan();
|
|
return Value(::log2(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.as_double() < 0)
|
|
return js_nan();
|
|
return Value(::log10(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sinh(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::cosh(number.as_double()));
|
|
}
|
|
|
|
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
|
|
JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
|
|
{
|
|
auto number = vm.argument(0).to_number(global_object);
|
|
if (vm.exception())
|
|
return {};
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
if (number.is_positive_infinity())
|
|
return Value(1);
|
|
if (number.is_negative_infinity())
|
|
return Value(-1);
|
|
return Value(::tanh(number.as_double()));
|
|
}
|
|
|
|
}
|