ladybird/Userland/Libraries/LibJS/Runtime/Object.cpp
Linus Groh 09bd5f8772 LibJS: Rewrite most of Object for spec compliance :^)
This is a huge patch, I know. In hindsight this perhaps could've been
done slightly more incremental, but I started and then fixed everything
until it worked, and here we are. I tried splitting of some completely
unrelated changes into separate commits, however. Anyway.

This is a rewrite of most of Object, and by extension large parts of
Array, Proxy, Reflect, String, TypedArray, and some other things.

What we already had worked fine for about 90% of things, but getting the
last 10% right proved to be increasingly difficult with the current code
that sort of grew organically and is only very loosely based on the
spec - this became especially obvious when we started fixing a large
number of test262 failures.

Key changes include:

- 1:1 matching function names and parameters of all object-related
  functions, to avoid ambiguity. Previously we had things like put(),
  which the spec doesn't have - as a result it wasn't always clear which
  need to be used.
- Better separation between object abstract operations and internal
  methods - the former are always the same, the latter can be overridden
  (and are therefore virtual). The internal methods (i.e. [[Foo]] in the
  spec) are now prefixed with 'internal_' for clarity - again, it was
  previously not always clear which AO a certain method represents,
  get() could've been both Get and [[Get]] (I don't know which one it
  was closer to right now).
  Note that some of the old names have been kept until all code relying
  on them is updated, but they are now simple wrappers around the
  closest matching standard abstract operation.
- Simplifications of the storage layer: functions that write values to
  storage are now prefixed with 'storage_' to make their purpose clear,
  and as they are not part of the spec they should not contain any steps
  specified by it. Much functionality is now covered by the layers above
  it and was removed (e.g. handling of accessors, attribute checks).
- PropertyAttributes has been greatly simplified, and is being replaced
  by PropertyDescriptor - a concept similar to the current
  implementation, but more aligned with the actual spec. See the commit
  message of the previous commit where it was introduced for details.
- As a bonus, and since I had to look at the spec a whole lot anyway, I
  introduced more inline comments with the exact steps from the spec -
  this makes it super easy to verify correctness.
- East-const all the things.

As a result of all of this, things are much more correct but a bit
slower now. Retaining speed wasn't a consideration at all, I have done
no profiling of the new code - there might be low hanging fruits, which
we can then harvest separately.

Special thanks to Idan for helping me with this by tracking down bugs,
updating everything outside of LibJS to work with these changes (LibWeb,
Spreadsheet, HackStudio), as well as providing countless patches to fix
regressions I introduced - there still are very few (we got it down to
5), but we also get many new passing test262 tests in return. :^)

Co-authored-by: Idan Horowitz <idan.horowitz@gmail.com>
2021-07-04 22:07:36 +01:00

1260 lines
44 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/String.h>
#include <AK/TemporaryChange.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/NativeProperty.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/PropertyDescriptor.h>
#include <LibJS/Runtime/ProxyObject.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/TemporaryClearException.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
// 10.1.12 OrdinaryObjectCreate ( proto [ , additionalInternalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinaryobjectcreate
Object* Object::create(GlobalObject& global_object, Object* prototype)
{
if (!prototype)
return global_object.heap().allocate<Object>(global_object, *global_object.empty_object_shape());
else if (prototype == global_object.object_prototype())
return global_object.heap().allocate<Object>(global_object, *global_object.new_object_shape());
else
return global_object.heap().allocate<Object>(global_object, *prototype);
}
Object::Object(GlobalObjectTag)
{
// This is the global object
m_shape = heap().allocate_without_global_object<Shape>(*this);
}
Object::Object(ConstructWithoutPrototypeTag, GlobalObject& global_object)
{
m_shape = heap().allocate_without_global_object<Shape>(global_object);
}
Object::Object(Object& prototype)
{
m_shape = prototype.global_object().empty_object_shape();
auto success = internal_set_prototype_of(&prototype);
VERIFY(success);
}
Object::Object(Shape& shape)
: m_shape(&shape)
{
m_storage.resize(shape.property_count());
}
void Object::initialize(GlobalObject&)
{
}
Object::~Object()
{
}
// 7.2 Testing and Comparison Operations, https://tc39.es/ecma262/#sec-testing-and-comparison-operations
// 7.2.5 IsExtensible ( O ), https://tc39.es/ecma262/#sec-isextensible-o
bool Object::is_extensible() const
{
return internal_is_extensible();
}
// 7.3 Operations on Objects, https://tc39.es/ecma262/#sec-operations-on-objects
// 7.3.2 Get ( O, P ), https://tc39.es/ecma262/#sec-get-o-p
Value Object::get(PropertyName const& property_name) const
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Return ? O.[[Get]](P, O).
return internal_get(property_name, this);
}
// 7.3.3 GetV ( V, P ) is defined as Value::get().
// 7.3.4 Set ( O, P, V, Throw ), https://tc39.es/ecma262/#sec-set-o-p-v-throw
bool Object::set(PropertyName const& property_name, Value value, bool throw_exceptions)
{
VERIFY(!value.is_empty());
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Assert: Type(Throw) is Boolean.
// 4. Let success be ? O.[[Set]](P, V, O).
auto success = internal_set(property_name, value, this);
if (vm.exception())
return {};
// 5. If success is false and Throw is true, throw a TypeError exception.
if (!success && throw_exceptions) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectSetReturnedFalse);
return {};
}
// 6. Return success.
return success;
}
// 7.3.5 CreateDataProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createdataproperty
bool Object::create_data_property(PropertyName const& property_name, Value value)
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
auto new_descriptor = PropertyDescriptor {
.value = value,
.writable = true,
.enumerable = true,
.configurable = true,
};
// 4. Return ? O.[[DefineOwnProperty]](P, newDesc).
return internal_define_own_property(property_name, new_descriptor);
}
// 7.3.6 CreateMethodProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createmethodproperty
bool Object::create_method_property(PropertyName const& property_name, Value value)
{
VERIFY(!value.is_empty());
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
auto new_descriptor = PropertyDescriptor {
.value = value,
.writable = true,
.enumerable = false,
.configurable = true,
};
// 4. Return ? O.[[DefineOwnProperty]](P, newDesc).
return internal_define_own_property(property_name, new_descriptor);
}
// 7.3.7 CreateDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createdatapropertyorthrow
bool Object::create_data_property_or_throw(PropertyName const& property_name, Value value)
{
VERIFY(!value.is_empty());
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let success be ? CreateDataProperty(O, P, V).
auto success = create_data_property(property_name, value);
if (vm.exception())
return {};
// 4. If success is false, throw a TypeError exception.
if (!success) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
return {};
}
// 5. Return success.
return success;
}
// 7.3.8 DefinePropertyOrThrow ( O, P, desc ), https://tc39.es/ecma262/#sec-definepropertyorthrow
bool Object::define_property_or_throw(PropertyName const& property_name, PropertyDescriptor const& property_descriptor)
{
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let success be ? O.[[DefineOwnProperty]](P, desc).
auto success = internal_define_own_property(property_name, property_descriptor);
if (vm.exception())
return {};
// 4. If success is false, throw a TypeError exception.
if (!success) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
return {};
}
// 5. Return success.
return success;
}
// 7.3.9 DeletePropertyOrThrow ( O, P ), https://tc39.es/ecma262/#sec-deletepropertyorthrow
bool Object::delete_property_or_throw(PropertyName const& property_name)
{
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let success be ? O.[[Delete]](P).
auto success = internal_delete(property_name);
if (vm.exception())
return {};
// 4. If success is false, throw a TypeError exception.
if (!success) {
// FIXME: Improve/contextualize error message
vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDeleteReturnedFalse);
return {};
}
// 5. Return success.
return success;
}
// 7.3.11 HasProperty ( O, P ), https://tc39.es/ecma262/#sec-hasproperty
bool Object::has_property(PropertyName const& property_name) const
{
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Return ? O.[[HasProperty]](P).
return internal_has_property(property_name);
}
// 7.3.12 HasOwnProperty ( O, P ), https://tc39.es/ecma262/#sec-hasownproperty
bool Object::has_own_property(PropertyName const& property_name) const
{
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 3. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = internal_get_own_property(property_name);
if (vm.exception())
return {};
// 4. If desc is undefined, return false.
if (!descriptor.has_value())
return false;
// 5. Return true.
return true;
}
// 7.3.15 SetIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-setintegritylevel
bool Object::set_integrity_level(IntegrityLevel level)
{
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object.
// 2. Assert: level is either sealed or frozen.
VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
// 3. Let status be ? O.[[PreventExtensions]]().
auto status = internal_prevent_extensions();
if (vm.exception())
return {};
// 4. If status is false, return false.
if (!status)
return false;
// 5. Let keys be ? O.[[OwnPropertyKeys]]().
auto keys = internal_own_property_keys();
if (vm.exception())
return {};
// 6. If level is sealed, then
if (level == IntegrityLevel::Sealed) {
// a. For each element k of keys, do
for (auto& key : keys) {
auto property_name = PropertyName::from_value(global_object, key);
// i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }).
define_property_or_throw(property_name, { .configurable = false });
if (vm.exception())
return {};
}
}
// 7. Else,
else {
// a. Assert: level is frozen.
// b. For each element k of keys, do
for (auto& key : keys) {
auto property_name = PropertyName::from_value(global_object, key);
// i. Let currentDesc be ? O.[[GetOwnProperty]](k).
auto current_descriptor = internal_get_own_property(property_name);
if (vm.exception())
return {};
// ii. If currentDesc is not undefined, then
if (!current_descriptor.has_value())
continue;
PropertyDescriptor descriptor;
// 1. If IsAccessorDescriptor(currentDesc) is true, then
if (current_descriptor->is_accessor_descriptor()) {
// a. Let desc be the PropertyDescriptor { [[Configurable]]: false }.
descriptor = { .configurable = false };
}
// 2. Else,
else {
// a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
descriptor = { .writable = false, .configurable = false };
}
// 3. Perform ? DefinePropertyOrThrow(O, k, desc).
define_property_or_throw(property_name, descriptor);
if (vm.exception())
return {};
}
}
// 8. Return true.
return true;
}
// 7.3.16 TestIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-testintegritylevel
bool Object::test_integrity_level(IntegrityLevel level) const
{
auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: level is either sealed or frozen.
VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
// 3. Let extensible be ? IsExtensible(O).
auto extensible = is_extensible();
if (vm.exception())
return {};
// 4. If extensible is true, return false.
// 5. NOTE: If the object is extensible, none of its properties are examined.
if (extensible)
return false;
// 6. Let keys be ? O.[[OwnPropertyKeys]]().
auto keys = internal_own_property_keys();
if (vm.exception())
return {};
// 7. For each element k of keys, do
for (auto& key : keys) {
auto property_name = PropertyName::from_value(global_object(), key);
// a. Let currentDesc be ? O.[[GetOwnProperty]](k).
auto current_descriptor = internal_get_own_property(property_name);
if (vm.exception())
return {};
// b. If currentDesc is not undefined, then
if (!current_descriptor.has_value())
continue;
// i. If currentDesc.[[Configurable]] is true, return false.
if (*current_descriptor->configurable)
return false;
// ii. If level is frozen and IsDataDescriptor(currentDesc) is true, then
if (level == IntegrityLevel::Frozen && current_descriptor->is_data_descriptor()) {
// 1. If currentDesc.[[Writable]] is true, return false.
if (*current_descriptor->writable)
return false;
}
}
// 8. Return true.
return true;
}
// 7.3.23 EnumerableOwnPropertyNames ( O, kind ), https://tc39.es/ecma262/#sec-enumerableownpropertynames
MarkedValueList Object::enumerable_own_property_names(PropertyKind kind) const
{
// NOTE: This has been flattened for readability, so some `else` branches in the
// spec text have been replaced with `continue`s in the loop below.
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object.
// 2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
auto own_keys = internal_own_property_keys();
if (vm.exception())
return MarkedValueList { heap() };
// 3. Let properties be a new empty List.
auto properties = MarkedValueList { heap() };
// 4. For each element key of ownKeys, do
for (auto& key : own_keys) {
// a. If Type(key) is String, then
if (!key.is_string())
continue;
auto property_name = PropertyName::from_value(global_object, key);
// i. Let desc be ? O.[[GetOwnProperty]](key).
auto descriptor = internal_get_own_property(property_name);
if (vm.exception())
return MarkedValueList { heap() };
// ii. If desc is not undefined and desc.[[Enumerable]] is true, then
if (descriptor.has_value() && *descriptor->enumerable) {
// 1. If kind is key, append key to properties.
if (kind == PropertyKind::Key) {
properties.append(key);
continue;
}
// 2. Else,
// a. Let value be ? Get(O, key).
auto value = get(property_name);
if (vm.exception())
return MarkedValueList { heap() };
// b. If kind is value, append value to properties.
if (kind == PropertyKind::Value) {
properties.append(value);
continue;
}
// c. Else,
// i. Assert: kind is key+value.
VERIFY(kind == PropertyKind::KeyAndValue);
// ii. Let entry be ! CreateArrayFromList(« key, value »).
auto entry = Array::create_from(global_object, { key, value });
// iii. Append entry to properties.
properties.append(entry);
}
}
// 5. Return properties.
return properties;
}
// 10.1 Ordinary Object Internal Methods and Internal Slots, https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots
// 10.1.1 [[GetPrototypeOf]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getprototypeof
Object* Object::internal_get_prototype_of() const
{
// 1. Return O.[[Prototype]].
return const_cast<Object*>(prototype());
}
// 10.1.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-setprototypeof-v
bool Object::internal_set_prototype_of(Object* new_prototype)
{
// 1. Assert: Either Type(V) is Object or Type(V) is Null.
// 2. Let current be O.[[Prototype]].
// 3. If SameValue(V, current) is true, return true.
if (prototype() == new_prototype)
return true;
// 4. Let extensible be O.[[Extensible]].
// 5. If extensible is false, return false.
if (!m_is_extensible)
return false;
// 6. Let p be V.
auto* prototype = new_prototype;
// 7. Let done be false.
// 8. Repeat, while done is false,
while (prototype) {
// a. If p is null, set done to true.
// b. Else if SameValue(p, O) is true, return false.
if (prototype == this)
return false;
// c. Else,
// i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 10.1.1, set done to true.
// NOTE: This is a best-effort implementation; we don't have a good way of detecting whether certain virtual
// Object methods have been overridden by a given object, but as ProxyObject is the only one doing that for
// [[SetPrototypeOf]], this check does the trick.
if (is<ProxyObject>(prototype))
break;
// ii. Else, set p to p.[[Prototype]].
prototype = prototype->prototype();
}
// 9. Set O.[[Prototype]] to V.
auto& shape = this->shape();
if (shape.is_unique())
shape.set_prototype_without_transition(new_prototype);
else
m_shape = shape.create_prototype_transition(new_prototype);
// 10. Return true.
return true;
}
// 10.1.3 [[IsExtensible]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-isextensible
bool Object::internal_is_extensible() const
{
// 1. Return O.[[Extensible]].
return m_is_extensible;
}
// 10.1.4 [[PreventExtensions]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-preventextensions
bool Object::internal_prevent_extensions()
{
// 1. Set O.[[Extensible]] to false.
m_is_extensible = false;
// 2. Return true.
return true;
}
// 10.1.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getownproperty-p
Optional<PropertyDescriptor> Object::internal_get_own_property(PropertyName const& property_name) const
{
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. If O does not have an own property with key P, return undefined.
if (!storage_has(property_name))
return {};
// 3. Let D be a newly created Property Descriptor with no fields.
PropertyDescriptor descriptor;
// 4. Let X be O's own property whose key is P.
auto [value, attributes] = *storage_get(property_name);
// 5. If X is a data property, then
if (!value.is_accessor()) {
// a. Set D.[[Value]] to the value of X's [[Value]] attribute.
descriptor.value = value.value_or(js_undefined());
// b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.
descriptor.writable = attributes.is_writable();
}
// 6. Else,
else {
// a. Assert: X is an accessor property.
// b. Set D.[[Get]] to the value of X's [[Get]] attribute.
descriptor.get = value.as_accessor().getter();
// c. Set D.[[Set]] to the value of X's [[Set]] attribute.
descriptor.set = value.as_accessor().setter();
}
// 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
descriptor.enumerable = attributes.is_enumerable();
// 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
descriptor.configurable = attributes.is_configurable();
// 9. Return D.
return descriptor;
}
// 10.1.6 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-defineownproperty-p-desc
bool Object::internal_define_own_property(PropertyName const& property_name, PropertyDescriptor const& property_descriptor)
{
VERIFY(property_name.is_valid());
auto& vm = this->vm();
// 1. Let current be ? O.[[GetOwnProperty]](P).
auto current = internal_get_own_property(property_name);
if (vm.exception())
return {};
// 2. Let extensible be ? IsExtensible(O).
auto extensible = is_extensible();
if (vm.exception())
return {};
// 3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).
return validate_and_apply_property_descriptor(this, property_name, extensible, property_descriptor, current);
}
// 10.1.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-hasproperty-p
bool Object::internal_has_property(PropertyName const& property_name) const
{
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let hasOwn be ? O.[[GetOwnProperty]](P).
auto has_own = internal_get_own_property(property_name);
if (vm.exception())
return {};
// 3. If hasOwn is not undefined, return true.
if (has_own.has_value())
return true;
// 4. Let parent be ? O.[[GetPrototypeOf]]().
auto parent = internal_get_prototype_of();
if (vm.exception())
return {};
// 5. If parent is not null, then
if (parent) {
// a. Return ? parent.[[HasProperty]](P).
return parent->internal_has_property(property_name);
}
// 6. Return false.
return false;
}
// 10.1.8 [[Get]] ( P, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-get-p-receiver
Value Object::internal_get(PropertyName const& property_name, Value receiver) const
{
VERIFY(!receiver.is_empty());
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = internal_get_own_property(property_name);
if (vm.exception())
return {};
// 3. If desc is undefined, then
if (!descriptor.has_value()) {
// a. Let parent be ? O.[[GetPrototypeOf]]().
auto parent = internal_get_prototype_of();
if (vm.exception())
return {};
// b. If parent is null, return undefined.
if (!parent)
return js_undefined();
// c. Return ? parent.[[Get]](P, Receiver).
return parent->internal_get(property_name, receiver);
}
// 4. If IsDataDescriptor(desc) is true, return desc.[[Value]].
if (descriptor->is_data_descriptor())
return *descriptor->value;
// 5. Assert: IsAccessorDescriptor(desc) is true.
VERIFY(descriptor->is_accessor_descriptor());
// 6. Let getter be desc.[[Get]].
auto* getter = *descriptor->get;
// 7. If getter is undefined, return undefined.
if (!getter)
return js_undefined();
// 8. Return ? Call(getter, Receiver).
return vm.call(*getter, receiver);
}
static bool ordinary_set_with_own_descriptor(Object&, PropertyName const&, Value, Value, Optional<PropertyDescriptor>);
// 10.1.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-set-p-v-receiver
bool Object::internal_set(PropertyName const& property_name, Value value, Value receiver)
{
VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty());
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let ownDesc be ? O.[[GetOwnProperty]](P).
auto own_descriptor = internal_get_own_property(property_name);
if (vm.exception())
return {};
// 3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc).
return ordinary_set_with_own_descriptor(*this, property_name, value, receiver, own_descriptor);
}
// 10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc ), https://tc39.es/ecma262/#sec-ordinarysetwithowndescriptor
bool ordinary_set_with_own_descriptor(Object& object, PropertyName const& property_name, Value value, Value receiver, Optional<PropertyDescriptor> own_descriptor)
{
auto& vm = object.vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. If ownDesc is undefined, then
if (!own_descriptor.has_value()) {
// a. Let parent be ? O.[[GetPrototypeOf]]().
auto parent = object.internal_get_prototype_of();
if (vm.exception())
return {};
// b. If parent is not null, then
if (parent) {
// i. Return ? parent.[[Set]](P, V, Receiver).
return parent->internal_set(property_name, value, receiver);
}
// c. Else,
else {
// i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
own_descriptor = PropertyDescriptor {
.value = js_undefined(),
.writable = true,
.enumerable = true,
.configurable = true,
};
}
}
// 3. If IsDataDescriptor(ownDesc) is true, then
if (own_descriptor->is_data_descriptor()) {
// a. If ownDesc.[[Writable]] is false, return false.
if (!*own_descriptor->writable)
return false;
// b. If Type(Receiver) is not Object, return false.
if (!receiver.is_object())
return false;
// c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P).
auto existing_descriptor = receiver.as_object().internal_get_own_property(property_name);
if (vm.exception())
return {};
// d. If existingDescriptor is not undefined, then
if (existing_descriptor.has_value()) {
// i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
if (existing_descriptor->is_accessor_descriptor())
return false;
// ii. If existingDescriptor.[[Writable]] is false, return false.
if (!*existing_descriptor->writable)
return false;
// iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V }.
auto value_descriptor = PropertyDescriptor { .value = value };
// iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc).
return receiver.as_object().internal_define_own_property(property_name, value_descriptor);
}
// e. Else,
else {
// i. Assert: Receiver does not currently have a property P.
VERIFY(!receiver.as_object().storage_has(property_name));
// ii. Return ? CreateDataProperty(Receiver, P, V).
return receiver.as_object().create_data_property(property_name, value);
}
}
// 4. Assert: IsAccessorDescriptor(ownDesc) is true.
VERIFY(own_descriptor->is_accessor_descriptor());
// 5. Let setter be ownDesc.[[Set]].
auto* setter = *own_descriptor->set;
// 6. If setter is undefined, return false.
if (!setter)
return false;
// 7. Perform ? Call(setter, Receiver, « V »).
(void)vm.call(*setter, receiver, value);
// 8. Return true.
return true;
}
// 10.1.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-delete-p
bool Object::internal_delete(PropertyName const& property_name)
{
auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_name.is_valid());
// 2. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = internal_get_own_property(property_name);
if (vm.exception())
return {};
// 3. If desc is undefined, return true.
if (!descriptor.has_value())
return true;
// 4. If desc.[[Configurable]] is true, then
if (*descriptor->configurable) {
// a. Remove the own property with name P from O.
storage_delete(property_name);
// b. Return true.
return true;
}
// 5. Return false.
return false;
}
// 10.1.11 [[OwnPropertyKeys]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys
MarkedValueList Object::internal_own_property_keys() const
{
auto& vm = this->vm();
// 1. Let keys be a new empty List.
MarkedValueList keys { heap() };
// 2. For each own property key P of O such that P is an array index, in ascending numeric index order, do
for (auto& entry : m_indexed_properties) {
// a. Add P as the last element of keys.
keys.append(js_string(vm, String::number(entry.index())));
}
// 3. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending chronological order of property creation, do
for (auto& it : shape().property_table_ordered()) {
if (it.key.is_string()) {
// a. Add P as the last element of keys.
keys.append(it.key.to_value(vm));
}
}
// 4. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property creation, do
for (auto& it : shape().property_table_ordered()) {
if (it.key.is_symbol()) {
// a. Add P as the last element of keys.
keys.append(it.key.to_value(vm));
}
}
// 5. Return keys.
return keys;
}
Optional<ValueAndAttributes> Object::storage_get(PropertyName const& property_name, CallNativeProperty call_native_property) const
{
VERIFY(property_name.is_valid());
Value value;
PropertyAttributes attributes;
if (property_name.is_number()) {
auto value_and_attributes = m_indexed_properties.get(property_name.as_number());
if (!value_and_attributes.has_value())
return {};
value = value_and_attributes->value;
attributes = value_and_attributes->attributes;
} else {
auto metadata = shape().lookup(property_name.to_string_or_symbol());
if (!metadata.has_value())
return {};
value = m_storage[metadata->offset];
attributes = metadata->attributes;
}
if (value.is_native_property() && call_native_property == CallNativeProperty::Yes)
value = call_native_property_getter(value.as_native_property(), this);
return ValueAndAttributes { .value = value, .attributes = attributes };
}
bool Object::storage_has(PropertyName const& property_name) const
{
VERIFY(property_name.is_valid());
if (property_name.is_number())
return m_indexed_properties.has_index(property_name.as_number());
return shape().lookup(property_name.to_string_or_symbol()).has_value();
}
void Object::storage_set(PropertyName const& property_name, ValueAndAttributes const& value_and_attributes)
{
VERIFY(property_name.is_valid());
auto [value, attributes] = value_and_attributes;
if (property_name.is_number()) {
auto index = property_name.as_number();
if (value.is_native_property()) {
m_indexed_properties.put(index, value, attributes);
} else {
auto existing_value = m_indexed_properties.get(index);
if (existing_value.has_value() && existing_value->value.is_native_property())
call_native_property_setter(existing_value->value.as_native_property(), this, value);
else
m_indexed_properties.put(index, value, attributes);
}
return;
}
// NOTE: We disable transitions during initialize(), this makes building common runtime objects significantly faster.
// Transitions are primarily interesting when scripts add properties to objects.
if (!m_transitions_enabled && !m_shape->is_unique()) {
m_shape->add_property_without_transition(property_name, attributes);
m_storage.resize(m_shape->property_count());
m_storage[m_shape->property_count() - 1] = value;
return;
}
auto property_name_string_or_symbol = property_name.to_string_or_symbol();
auto metadata = shape().lookup(property_name_string_or_symbol);
if (!metadata.has_value()) {
if (!m_shape->is_unique() && shape().property_count() > 100) {
// If you add more than 100 properties to an object, let's stop doing
// transitions to avoid filling up the heap with shapes.
ensure_shape_is_unique();
}
if (m_shape->is_unique()) {
m_shape->add_property_to_unique_shape(property_name_string_or_symbol, attributes);
m_storage.resize(m_shape->property_count());
} else if (m_transitions_enabled) {
set_shape(*m_shape->create_put_transition(property_name_string_or_symbol, attributes));
} else {
m_shape->add_property_without_transition(property_name, attributes);
m_storage.resize(m_shape->property_count());
}
metadata = shape().lookup(property_name_string_or_symbol);
VERIFY(metadata.has_value());
}
if (attributes != metadata->attributes) {
if (m_shape->is_unique()) {
m_shape->reconfigure_property_in_unique_shape(property_name_string_or_symbol, attributes);
} else {
set_shape(*m_shape->create_configure_transition(property_name_string_or_symbol, attributes));
}
metadata = shape().lookup(property_name_string_or_symbol);
VERIFY(metadata.has_value());
}
if (value.is_native_property()) {
m_storage[metadata->offset] = value;
} else {
auto existing_value = m_storage[metadata->offset];
if (existing_value.is_native_property())
call_native_property_setter(existing_value.as_native_property(), this, value);
else
m_storage[metadata->offset] = value;
}
}
void Object::storage_delete(PropertyName const& property_name)
{
VERIFY(property_name.is_valid());
VERIFY(storage_has(property_name));
if (property_name.is_number())
return m_indexed_properties.remove(property_name.as_number());
auto metadata = shape().lookup(property_name.to_string_or_symbol());
VERIFY(metadata.has_value());
ensure_shape_is_unique();
shape().remove_property_from_unique_shape(property_name.to_string_or_symbol(), metadata->offset);
m_storage.remove(metadata->offset);
}
void Object::set_shape(Shape& new_shape)
{
m_storage.resize(new_shape.property_count());
m_shape = &new_shape;
}
bool Object::define_native_accessor(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> getter, Function<Value(VM&, GlobalObject&)> setter, PropertyAttributes attribute)
{
auto& vm = this->vm();
String formatted_property_name;
if (property_name.is_string()) {
formatted_property_name = property_name.as_string();
} else {
formatted_property_name = String::formatted("[{}]", property_name.as_symbol()->description());
}
FunctionObject* getter_function = nullptr;
if (getter) {
auto name = String::formatted("get {}", formatted_property_name);
getter_function = NativeFunction::create(global_object(), name, move(getter));
getter_function->define_property_without_transition(vm.names.length, Value(0), Attribute::Configurable);
if (vm.exception())
return {};
getter_function->define_property_without_transition(vm.names.name, js_string(vm.heap(), name), Attribute::Configurable);
if (vm.exception())
return {};
}
FunctionObject* setter_function = nullptr;
if (setter) {
auto name = String::formatted("set {}", formatted_property_name);
setter_function = NativeFunction::create(global_object(), name, move(setter));
setter_function->define_property_without_transition(vm.names.length, Value(1), Attribute::Configurable);
if (vm.exception())
return {};
setter_function->define_property_without_transition(vm.names.name, js_string(vm.heap(), name), Attribute::Configurable);
if (vm.exception())
return {};
}
return define_accessor(property_name, getter_function, setter_function, attribute);
}
bool Object::define_property_without_transition(PropertyName const& property_name, Value value, PropertyAttributes attributes, bool throw_exceptions)
{
TemporaryChange change(m_transitions_enabled, false);
return define_property(property_name, value, attributes, throw_exceptions);
}
bool Object::define_accessor(PropertyName const& property_name, FunctionObject* getter, FunctionObject* setter, PropertyAttributes attributes, bool throw_exceptions)
{
VERIFY(property_name.is_valid());
auto existing_property = storage_get(property_name).value_or({}).value;
auto* accessor = existing_property.is_accessor() ? &existing_property.as_accessor() : nullptr;
if (!accessor) {
accessor = Accessor::create(vm(), getter, setter);
bool definition_success = define_property(property_name, accessor, attributes, throw_exceptions);
if (vm().exception())
return {};
if (!definition_success)
return false;
} else {
if (getter)
accessor->set_getter(getter);
if (setter)
accessor->set_setter(setter);
}
return true;
}
void Object::ensure_shape_is_unique()
{
if (shape().is_unique())
return;
m_shape = m_shape->create_unique_clone();
}
// Simple side-effect free property lookup, following the prototype chain. Non-standard.
Value Object::get_without_side_effects(const PropertyName& property_name) const
{
auto* object = this;
while (object) {
auto value_and_attributes = object->storage_get(property_name, CallNativeProperty::No);
if (value_and_attributes.has_value())
return value_and_attributes->value;
object = object->prototype();
}
return {};
}
bool Object::define_native_function(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> native_function, i32 length, PropertyAttributes attribute)
{
auto& vm = this->vm();
String function_name;
if (property_name.is_string()) {
function_name = property_name.as_string();
} else {
function_name = String::formatted("[{}]", property_name.as_symbol()->description());
}
auto* function = NativeFunction::create(global_object(), function_name, move(native_function));
function->define_property_without_transition(vm.names.length, Value(length), Attribute::Configurable);
if (vm.exception())
return {};
function->define_property_without_transition(vm.names.name, js_string(vm.heap(), function_name), Attribute::Configurable);
if (vm.exception())
return {};
return define_property(property_name, function, attribute);
}
bool Object::define_native_property(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> getter, Function<void(VM&, GlobalObject&, Value)> setter, PropertyAttributes attribute)
{
return define_property(property_name, heap().allocate_without_global_object<NativeProperty>(move(getter), move(setter)), attribute);
}
// 20.1.2.3.1 ObjectDefineProperties ( O, Properties ), https://tc39.es/ecma262/#sec-objectdefineproperties
Object* Object::define_properties(Value properties)
{
auto& vm = this->vm();
auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object.
// 2. Let props be ? ToObject(Properties).
auto* props = properties.to_object(global_object);
if (vm.exception())
return {};
// 3. Let keys be ? props.[[OwnPropertyKeys]]().
auto keys = props->internal_own_property_keys();
if (vm.exception())
return {};
struct NameAndDescriptor {
PropertyName name;
PropertyDescriptor descriptor;
};
// 4. Let descriptors be a new empty List.
Vector<NameAndDescriptor> descriptors;
// 5. For each element nextKey of keys, do
for (auto& next_key : keys) {
auto property_name = PropertyName::from_value(global_object, next_key);
// a. Let propDesc be ? props.[[GetOwnProperty]](nextKey).
auto property_descriptor = props->internal_get_own_property(property_name);
if (vm.exception())
return {};
// b. If propDesc is not undefined and propDesc.[[Enumerable]] is true, then
if (property_descriptor.has_value() && *property_descriptor->enumerable) {
// i. Let descObj be ? Get(props, nextKey).
auto descriptor_object = props->get(property_name);
if (vm.exception())
return {};
// ii. Let desc be ? ToPropertyDescriptor(descObj).
auto descriptor = to_property_descriptor(global_object, descriptor_object);
if (vm.exception())
return {};
// iii. Append the pair (a two element List) consisting of nextKey and desc to the end of descriptors.
descriptors.append({ property_name, descriptor });
}
}
// 6. For each element pair of descriptors, do
for (auto& [name, descriptor] : descriptors) {
// a. Let P be the first element of pair.
// b. Let desc be the second element of pair.
// c. Perform ? DefinePropertyOrThrow(O, P, desc).
define_property_or_throw(name, descriptor);
if (vm.exception())
return {};
}
// 7. Return O.
return this;
}
void Object::visit_edges(Cell::Visitor& visitor)
{
Cell::visit_edges(visitor);
visitor.visit(m_shape);
for (auto& value : m_storage)
visitor.visit(value);
m_indexed_properties.for_each_value([&visitor](auto& value) {
visitor.visit(value);
});
}
// 7.1.1.1 OrdinaryToPrimitive ( O, hint ), https://tc39.es/ecma262/#sec-ordinarytoprimitive
Value Object::ordinary_to_primitive(Value::PreferredType preferred_type) const
{
VERIFY(preferred_type == Value::PreferredType::String || preferred_type == Value::PreferredType::Number);
auto& vm = this->vm();
AK::Array<PropertyName, 2> method_names;
if (preferred_type == Value::PreferredType::String)
method_names = { vm.names.toString, vm.names.valueOf };
else
method_names = { vm.names.valueOf, vm.names.toString };
for (auto& method_name : method_names) {
auto method = get(method_name);
if (vm.exception())
return {};
if (method.is_function()) {
auto result = vm.call(method.as_function(), const_cast<Object*>(this));
if (!result.is_object())
return result;
}
}
vm.throw_exception<TypeError>(global_object(), ErrorType::Convert, "object", preferred_type == Value::PreferredType::String ? "string" : "number");
return {};
}
Value Object::invoke_internal(const StringOrSymbol& property_name, Optional<MarkedValueList> arguments)
{
auto& vm = this->vm();
auto property = get(property_name).value_or(js_undefined());
if (vm.exception())
return {};
if (!property.is_function()) {
vm.throw_exception<TypeError>(global_object(), ErrorType::NotAFunction, property.to_string_without_side_effects());
return {};
}
return vm.call(property.as_function(), this, move(arguments));
}
Value Object::call_native_property_getter(NativeProperty& property, Value this_value) const
{
auto& vm = this->vm();
ExecutionContext execution_context;
if (auto* interpreter = vm.interpreter_if_exists())
execution_context.current_node = interpreter->current_node();
execution_context.is_strict_mode = vm.in_strict_mode();
execution_context.this_value = this_value;
vm.push_execution_context(execution_context, global_object());
if (vm.exception())
return {};
auto result = property.get(vm, global_object());
vm.pop_execution_context();
return result;
}
void Object::call_native_property_setter(NativeProperty& property, Value this_value, Value setter_value) const
{
auto& vm = this->vm();
ExecutionContext execution_context;
if (auto* interpreter = vm.interpreter_if_exists())
execution_context.current_node = interpreter->current_node();
execution_context.is_strict_mode = vm.in_strict_mode();
execution_context.this_value = this_value;
vm.push_execution_context(execution_context, global_object());
if (vm.exception())
return;
property.set(vm, global_object(), setter_value);
vm.pop_execution_context();
}
}