ladybird/Kernel/Storage/ATA/ATAPort.h
2023-03-06 23:46:36 +01:00

156 lines
5.8 KiB
C++

/*
* Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <Kernel/Storage/ATA/ATADevice.h>
namespace Kernel {
class AsyncBlockDeviceRequest;
class ATAPort
: public AtomicRefCounted<ATAPort>
, public LockWeakable<ATAPort> {
friend class ATAPortInterruptDisabler;
friend class ATAPortInterruptCleaner;
public:
struct TaskFile {
u8 command;
u8 lba_low[3];
u8 device;
u8 lba_high[3];
u8 features_high;
u16 count;
u8 icc;
u8 control;
u32 reserved;
};
enum class TransactionDirection : u8 {
Read,
Write,
};
struct [[gnu::packed]] PhysicalRegionDescriptor {
u32 offset;
u16 size { 0 };
u16 end_of_table { 0 };
};
enum class LBAMode : u8 {
None,
TwentyEightBit,
FortyEightBit,
};
public:
LockRefPtr<StorageDevice> connected_device(size_t device_index) const;
virtual ~ATAPort() = default;
virtual ErrorOr<void> disable() = 0;
virtual ErrorOr<void> power_on() = 0;
ErrorOr<void> detect_connected_devices();
ErrorOr<bool> handle_interrupt_after_dma_transaction();
ErrorOr<void> start_request(ATADevice const& associated_device, AsyncBlockDeviceRequest&);
// Note: Generic (P)ATA IDE "ports" are tied to the IDE channel link (cable), and trying to
// reset the master port or slave port and vice versa requires to actually reset
// both at once...
// This is due to the fact that IDE devices can be connected together (master-slave)
// with one 80 pin cable which forms one (primary/secondary) "ATA bus".
// Intel AHCI controllers generally allow individual phy port reset. The caller
// of this method should know this in advance...
// Note: ATAPI devices are an exception to this, so even if we initiate a
// a port reset, there's no guarantee that ATAPI devices will reset anyway,
// so resetting them requires to actually send the ATA "DEVICE RESET" command.
virtual ErrorOr<void> port_phy_reset() = 0;
// Note: Software reset means individual reset to a selected device on the "bus" (port).
// This means that this will likely work for devices that indicate support for
// PACKET commands (ATAPI devices) that also support DEVICE RESET. For other devices
// there's no other method to reset them besides (full) PHY reset.
// For devices that don't support this feature, just return ENOTSUP.
virtual ErrorOr<void> soft_reset() { return Error::from_errno(ENOTSUP); }
ErrorOr<void> execute_polled_command(TransactionDirection direction, LBAMode lba_mode, TaskFile const& taskfile, UserOrKernelBuffer&, size_t block_offset, size_t words_count, size_t preparation_timeout_in_milliseconds, size_t completion_timeout_in_milliseconds);
virtual bool has_sata_capabilities() { return false; }
virtual bool pio_capable() const = 0;
virtual bool dma_capable() const = 0;
virtual size_t max_possible_devices_connected() const = 0;
private:
ErrorOr<void> prepare_and_initiate_dma_transaction(ATADevice const& associated_device);
ErrorOr<void> prepare_and_initiate_pio_transaction(ATADevice const& associated_device);
void complete_dma_transaction(AsyncDeviceRequest::RequestResult result);
void complete_pio_transaction(AsyncDeviceRequest::RequestResult result);
void fix_name_string_in_identify_device_block();
protected:
virtual ErrorOr<u8> task_file_status() = 0;
virtual ErrorOr<u8> task_file_error() = 0;
virtual ErrorOr<void> wait_if_busy_until_timeout(size_t timeout_in_milliseconds) = 0;
virtual ErrorOr<void> device_select(size_t device_index) = 0;
virtual ErrorOr<bool> detect_presence_on_selected_device() = 0;
virtual ErrorOr<void> enable_interrupts() = 0;
virtual ErrorOr<void> disable_interrupts() = 0;
virtual ErrorOr<void> stop_busmastering() = 0;
virtual ErrorOr<void> start_busmastering(TransactionDirection) = 0;
virtual ErrorOr<void> force_busmastering_status_clean() = 0;
virtual ErrorOr<u8> busmastering_status() = 0;
virtual ErrorOr<void> prepare_transaction_with_busmastering(TransactionDirection, PhysicalAddress prdt_buffer) = 0;
virtual ErrorOr<void> initiate_transaction(TransactionDirection) = 0;
virtual ErrorOr<void> force_clear_interrupts() = 0;
// Note: This method assume we already selected the correct device!
virtual ErrorOr<void> load_taskfile_into_registers(TaskFile const&, LBAMode lba_mode, size_t completion_timeout_in_milliseconds) = 0;
virtual ErrorOr<void> read_pio_data_to_buffer(UserOrKernelBuffer&, size_t block_offset, size_t words_count) = 0;
virtual ErrorOr<void> write_pio_data_from_buffer(UserOrKernelBuffer const&, size_t block_offset, size_t words_count) = 0;
PhysicalRegionDescriptor& prdt() { return *reinterpret_cast<PhysicalRegionDescriptor*>(m_prdt_region->vaddr().as_ptr()); }
ATAPort(ATAController const& parent_controller, u8 port_index, NonnullOwnPtr<KBuffer> ata_identify_data_buffer)
: m_port_index(port_index)
, m_ata_identify_data_buffer(move(ata_identify_data_buffer))
, m_parent_ata_controller(parent_controller)
{
}
mutable Mutex m_lock;
Spinlock<LockRank::None> m_hard_lock {};
EntropySource m_entropy_source;
LockRefPtr<AsyncBlockDeviceRequest> m_current_request;
u64 m_current_request_block_index { 0 };
bool m_current_request_flushing_cache { false };
OwnPtr<Memory::Region> m_prdt_region;
OwnPtr<Memory::Region> m_dma_buffer_region;
RefPtr<Memory::PhysicalPage> m_prdt_page;
RefPtr<Memory::PhysicalPage> m_dma_buffer_page;
const u8 m_port_index;
Vector<NonnullLockRefPtr<ATADevice>> m_ata_devices;
NonnullOwnPtr<KBuffer> m_ata_identify_data_buffer;
NonnullLockRefPtr<ATAController> m_parent_ata_controller;
};
}