ladybird/Userland/Libraries/LibJS/Runtime/VM.h
Andreas Kling 1d29f9081f LibJS: Remove JIT compiler
The JIT compiler was an interesting experiment, but ultimately the
security & complexity cost of doing arbitrary code generation at runtime
is far too high.

In subsequent commits, the bytecode format will change drastically, and
instead of rewriting the JIT to fit the new bytecode, this patch simply
removes the JIT instead.

Other engines, JavaScriptCore in particular, have already proven that
it's possible to handle the vast majority of contemporary web content
with an interpreter. They are currently ~5x faster than us on benchmarks
when running without a JIT. We need to catch up to them before
considering performance techniques with a heavy security cost.
2024-02-19 21:45:27 +01:00

346 lines
14 KiB
C++

/*
* Copyright (c) 2020-2023, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021-2022, David Tuin <davidot@serenityos.org>
* Copyright (c) 2023, networkException <networkexception@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/DeprecatedFlyString.h>
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/RefCounted.h>
#include <AK/StackInfo.h>
#include <AK/Variant.h>
#include <LibJS/CyclicModule.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Heap/MarkedVector.h>
#include <LibJS/ModuleLoading.h>
#include <LibJS/Runtime/CommonPropertyNames.h>
#include <LibJS/Runtime/Completion.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/ErrorTypes.h>
#include <LibJS/Runtime/ExecutionContext.h>
#include <LibJS/Runtime/Promise.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
class Identifier;
struct BindingPattern;
enum class HandledByHost {
Handled,
Unhandled,
};
class VM : public RefCounted<VM> {
public:
struct CustomData {
virtual ~CustomData() = default;
virtual void spin_event_loop_until(JS::SafeFunction<bool()> goal_condition) = 0;
};
static ErrorOr<NonnullRefPtr<VM>> create(OwnPtr<CustomData> = {});
~VM();
Heap& heap() { return m_heap; }
Heap const& heap() const { return m_heap; }
Bytecode::Interpreter& bytecode_interpreter();
void dump_backtrace() const;
void gather_roots(HashMap<Cell*, HeapRoot>&);
#define __JS_ENUMERATE(SymbolName, snake_name) \
NonnullGCPtr<Symbol> well_known_symbol_##snake_name() const \
{ \
return *m_well_known_symbols.snake_name; \
}
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
HashMap<String, GCPtr<PrimitiveString>>& string_cache()
{
return m_string_cache;
}
HashMap<ByteString, GCPtr<PrimitiveString>>& byte_string_cache()
{
return m_byte_string_cache;
}
PrimitiveString& empty_string() { return *m_empty_string; }
PrimitiveString& single_ascii_character_string(u8 character)
{
VERIFY(character < 0x80);
return *m_single_ascii_character_strings[character];
}
// This represents the list of errors from ErrorTypes.h whose messages are used in contexts which
// must not fail to allocate when they are used. For example, we cannot allocate when we raise an
// out-of-memory error, thus we pre-allocate that error string at VM creation time.
enum class ErrorMessage {
OutOfMemory,
// Keep this last:
__Count,
};
String const& error_message(ErrorMessage) const;
bool did_reach_stack_space_limit() const
{
// Address sanitizer (ASAN) used to check for more space but
// currently we can't detect the stack size with it enabled.
return m_stack_info.size_free() < 32 * KiB;
}
// TODO: Rename this function instead of providing a second argument, now that the global object is no longer passed in.
struct CheckStackSpaceLimitTag { };
ThrowCompletionOr<void> push_execution_context(ExecutionContext& context, CheckStackSpaceLimitTag)
{
// Ensure we got some stack space left, so the next function call doesn't kill us.
if (did_reach_stack_space_limit())
return throw_completion<InternalError>(ErrorType::CallStackSizeExceeded);
push_execution_context(context);
return {};
}
void push_execution_context(ExecutionContext&);
void pop_execution_context();
// https://tc39.es/ecma262/#running-execution-context
// At any point in time, there is at most one execution context per agent that is actually executing code.
// This is known as the agent's running execution context.
ExecutionContext& running_execution_context()
{
VERIFY(!m_execution_context_stack.is_empty());
return *m_execution_context_stack.last();
}
ExecutionContext const& running_execution_context() const
{
VERIFY(!m_execution_context_stack.is_empty());
return *m_execution_context_stack.last();
}
// https://tc39.es/ecma262/#execution-context-stack
// The execution context stack is used to track execution contexts.
Vector<ExecutionContext*> const& execution_context_stack() const { return m_execution_context_stack; }
Vector<ExecutionContext*>& execution_context_stack() { return m_execution_context_stack; }
Environment const* lexical_environment() const { return running_execution_context().lexical_environment; }
Environment* lexical_environment() { return running_execution_context().lexical_environment; }
Environment const* variable_environment() const { return running_execution_context().variable_environment; }
Environment* variable_environment() { return running_execution_context().variable_environment; }
// https://tc39.es/ecma262/#current-realm
// The value of the Realm component of the running execution context is also called the current Realm Record.
Realm const* current_realm() const { return running_execution_context().realm; }
Realm* current_realm() { return running_execution_context().realm; }
// https://tc39.es/ecma262/#active-function-object
// The value of the Function component of the running execution context is also called the active function object.
FunctionObject const* active_function_object() const { return running_execution_context().function; }
FunctionObject* active_function_object() { return running_execution_context().function; }
bool in_strict_mode() const;
size_t argument_count() const
{
if (m_execution_context_stack.is_empty())
return 0;
return running_execution_context().arguments.size();
}
Value argument(size_t index) const
{
if (m_execution_context_stack.is_empty())
return {};
return running_execution_context().argument(index);
}
Value this_value() const
{
return running_execution_context().this_value;
}
ThrowCompletionOr<Value> resolve_this_binding();
StackInfo const& stack_info() const { return m_stack_info; }
HashMap<String, NonnullGCPtr<Symbol>> const& global_symbol_registry() const { return m_global_symbol_registry; }
HashMap<String, NonnullGCPtr<Symbol>>& global_symbol_registry() { return m_global_symbol_registry; }
u32 execution_generation() const { return m_execution_generation; }
void finish_execution_generation() { ++m_execution_generation; }
ThrowCompletionOr<Reference> resolve_binding(DeprecatedFlyString const&, Environment* = nullptr);
ThrowCompletionOr<Reference> get_identifier_reference(Environment*, DeprecatedFlyString, bool strict, size_t hops = 0);
// 5.2.3.2 Throw an Exception, https://tc39.es/ecma262/#sec-throw-an-exception
template<typename T, typename... Args>
Completion throw_completion(Args&&... args)
{
auto& realm = *current_realm();
auto completion = T::create(realm, forward<Args>(args)...);
return JS::throw_completion(completion);
}
template<typename T, typename... Args>
Completion throw_completion(ErrorType type, Args&&... args)
{
return throw_completion<T>(ByteString::formatted(type.message(), forward<Args>(args)...));
}
Value get_new_target();
Object* get_import_meta();
Object& get_global_object();
CommonPropertyNames names;
void run_queued_promise_jobs();
void enqueue_promise_job(Function<ThrowCompletionOr<Value>()> job, Realm*);
void run_queued_finalization_registry_cleanup_jobs();
void enqueue_finalization_registry_cleanup_job(FinalizationRegistry&);
void promise_rejection_tracker(Promise&, Promise::RejectionOperation) const;
Function<void()> on_call_stack_emptied;
Function<void(Promise&)> on_promise_unhandled_rejection;
Function<void(Promise&)> on_promise_rejection_handled;
CustomData* custom_data() { return m_custom_data; }
ThrowCompletionOr<void> binding_initialization(DeprecatedFlyString const& target, Value value, Environment* environment);
ThrowCompletionOr<void> binding_initialization(NonnullRefPtr<BindingPattern const> const& target, Value value, Environment* environment);
ThrowCompletionOr<Value> named_evaluation_if_anonymous_function(ASTNode const& expression, DeprecatedFlyString const& name);
void save_execution_context_stack();
void clear_execution_context_stack();
void restore_execution_context_stack();
// Do not call this method unless you are sure this is the only and first module to be loaded in this vm.
ThrowCompletionOr<void> link_and_eval_module(Badge<Bytecode::Interpreter>, SourceTextModule& module);
ScriptOrModule get_active_script_or_module() const;
// NOTE: The host defined implementation described in the web spec https://html.spec.whatwg.org/multipage/webappapis.html#hostloadimportedmodule
// currently references proposal-import-attributes.
// Our implementation of this proposal is outdated however, as such we try to adapt the proposal and living standard
// to match our implementation for now.
// 16.2.1.8 HostLoadImportedModule ( referrer, moduleRequest, hostDefined, payload ), https://tc39.es/proposal-import-attributes/#sec-HostLoadImportedModule
Function<void(ImportedModuleReferrer, ModuleRequest const&, GCPtr<GraphLoadingState::HostDefined>, ImportedModulePayload)> host_load_imported_module;
Function<HashMap<PropertyKey, Value>(SourceTextModule&)> host_get_import_meta_properties;
Function<void(Object*, SourceTextModule const&)> host_finalize_import_meta;
Function<Vector<ByteString>()> host_get_supported_import_attributes;
void set_dynamic_imports_allowed(bool value) { m_dynamic_imports_allowed = value; }
Function<void(Promise&, Promise::RejectionOperation)> host_promise_rejection_tracker;
Function<ThrowCompletionOr<Value>(JobCallback&, Value, ReadonlySpan<Value>)> host_call_job_callback;
Function<void(FinalizationRegistry&)> host_enqueue_finalization_registry_cleanup_job;
Function<void(Function<ThrowCompletionOr<Value>()>, Realm*)> host_enqueue_promise_job;
Function<JobCallback(FunctionObject&)> host_make_job_callback;
Function<ThrowCompletionOr<void>(Realm&)> host_ensure_can_compile_strings;
Function<ThrowCompletionOr<void>(Object&)> host_ensure_can_add_private_element;
Function<ThrowCompletionOr<HandledByHost>(ArrayBuffer&, size_t)> host_resize_array_buffer;
// Execute a specific AST node either in AST or BC interpreter, depending on which one is enabled by default.
// NOTE: This is meant as a temporary stopgap until everything is bytecode.
ThrowCompletionOr<Value> execute_ast_node(ASTNode const&);
Vector<StackTraceElement> stack_trace() const;
private:
using ErrorMessages = AK::Array<String, to_underlying(ErrorMessage::__Count)>;
struct WellKnownSymbols {
#define __JS_ENUMERATE(SymbolName, snake_name) \
GCPtr<Symbol> snake_name;
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
};
VM(OwnPtr<CustomData>, ErrorMessages);
ThrowCompletionOr<void> property_binding_initialization(BindingPattern const& binding, Value value, Environment* environment);
ThrowCompletionOr<void> iterator_binding_initialization(BindingPattern const& binding, IteratorRecord& iterator_record, Environment* environment);
void load_imported_module(ImportedModuleReferrer, ModuleRequest const&, GCPtr<GraphLoadingState::HostDefined>, ImportedModulePayload);
ThrowCompletionOr<void> link_and_eval_module(CyclicModule&);
void set_well_known_symbols(WellKnownSymbols well_known_symbols) { m_well_known_symbols = move(well_known_symbols); }
HashMap<String, GCPtr<PrimitiveString>> m_string_cache;
HashMap<ByteString, GCPtr<PrimitiveString>> m_byte_string_cache;
Heap m_heap;
Vector<ExecutionContext*> m_execution_context_stack;
Vector<Vector<ExecutionContext*>> m_saved_execution_context_stacks;
StackInfo m_stack_info;
// GlobalSymbolRegistry, https://tc39.es/ecma262/#table-globalsymbolregistry-record-fields
HashMap<String, NonnullGCPtr<Symbol>> m_global_symbol_registry;
Vector<Function<ThrowCompletionOr<Value>()>> m_promise_jobs;
Vector<GCPtr<FinalizationRegistry>> m_finalization_registry_cleanup_jobs;
GCPtr<PrimitiveString> m_empty_string;
GCPtr<PrimitiveString> m_single_ascii_character_strings[128] {};
ErrorMessages m_error_messages;
struct StoredModule {
ImportedModuleReferrer referrer;
ByteString filename;
ByteString type;
Handle<Module> module;
bool has_once_started_linking { false };
};
StoredModule* get_stored_module(ImportedModuleReferrer const& script_or_module, ByteString const& filename, ByteString const& type);
Vector<StoredModule> m_loaded_modules;
WellKnownSymbols m_well_known_symbols;
u32 m_execution_generation { 0 };
OwnPtr<CustomData> m_custom_data;
OwnPtr<Bytecode::Interpreter> m_bytecode_interpreter;
bool m_dynamic_imports_allowed { false };
};
template<typename GlobalObjectType, typename... Args>
[[nodiscard]] static NonnullOwnPtr<ExecutionContext> create_simple_execution_context(VM& vm, Args&&... args)
{
auto root_execution_context = MUST(Realm::initialize_host_defined_realm(
vm,
[&](Realm& realm_) -> GlobalObject* {
return vm.heap().allocate_without_realm<GlobalObjectType>(realm_, forward<Args>(args)...);
},
nullptr));
return root_execution_context;
}
}