ladybird/Libraries/LibWeb/CSS/StyleValues/CalculatedStyleValue.cpp
Sam Atkins 1d71662f31 LibWeb/CSS: Wrap calc()-resolution data in a struct
Initially I added this to the existing CalculationContext, but in
reality, we have some data at parse-time and different data at
resolve-time, so it made more sense to keep those separate.

Instead of needing a variety of methods for resolving a Foo, depending
on whether we have a Layout::Node available, or a percentage basis, or
a length resolution context... put those in a
CalculationResolutionContext, and just pass that one thing to these
methods. This also removes the need for separate resolve_*_percentage()
methods, because we can just pass the percentage basis in to the regular
resolve_foo() method.

This also corrects the issue that *any* calculation may need to resolve
lengths, but we previously only passed a length resolution context to
specific types in some situations. Now, they can all have one available,
though it's up to the caller to provide it.
2025-01-30 19:31:54 +01:00

1909 lines
62 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
* Copyright (c) 2021-2025, Sam Atkins <sam@ladybird.org>
* Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "CalculatedStyleValue.h"
#include <LibWeb/CSS/Percentage.h>
#include <LibWeb/CSS/PropertyID.h>
namespace Web::CSS {
static Optional<CSSNumericType> add_the_types(Vector<NonnullOwnPtr<CalculationNode>> const& nodes)
{
Optional<CSSNumericType> left_type;
for (auto const& value : nodes) {
auto right_type = value->numeric_type();
if (!right_type.has_value())
return {};
if (left_type.has_value()) {
left_type = left_type->added_to(right_type.value());
} else {
left_type = right_type;
}
if (!left_type.has_value())
return {};
}
return left_type;
}
static Optional<CSSNumericType> add_the_types(CalculationNode const& a, CalculationNode const& b)
{
auto a_type = a.numeric_type();
auto b_type = b.numeric_type();
if (!a_type.has_value() || !b_type.has_value())
return {};
return a_type->added_to(*b_type);
}
static Optional<CSSNumericType> add_the_types(CalculationNode const& a, CalculationNode const& b, CalculationNode const& c)
{
auto a_type = a.numeric_type();
auto b_type = b.numeric_type();
auto c_type = c.numeric_type();
if (!a_type.has_value() || !b_type.has_value() || !c_type.has_value())
return {};
auto a_and_b_type = a_type->added_to(*b_type);
if (!a_and_b_type.has_value())
return {};
return a_and_b_type->added_to(*c_type);
}
static Optional<CSSNumericType> multiply_the_types(Vector<NonnullOwnPtr<CalculationNode>> const& nodes)
{
// At a * sub-expression, multiply the types of the left and right arguments.
// The sub-expressions type is the returned result.
Optional<CSSNumericType> left_type;
for (auto const& value : nodes) {
auto right_type = value->numeric_type();
if (!right_type.has_value())
return {};
if (left_type.has_value()) {
left_type = left_type->multiplied_by(right_type.value());
} else {
left_type = right_type;
}
if (!left_type.has_value())
return {};
}
return left_type;
}
Optional<CalculationNode::ConstantType> CalculationNode::constant_type_from_string(StringView string)
{
if (string.equals_ignoring_ascii_case("e"sv))
return CalculationNode::ConstantType::E;
if (string.equals_ignoring_ascii_case("pi"sv))
return CalculationNode::ConstantType::Pi;
if (string.equals_ignoring_ascii_case("infinity"sv))
return CalculationNode::ConstantType::Infinity;
if (string.equals_ignoring_ascii_case("-infinity"sv))
return CalculationNode::ConstantType::MinusInfinity;
if (string.equals_ignoring_ascii_case("NaN"sv))
return CalculationNode::ConstantType::NaN;
return {};
}
CalculationNode::CalculationNode(Type type, Optional<CSSNumericType> numeric_type)
: m_type(type)
, m_numeric_type(move(numeric_type))
{
}
CalculationNode::~CalculationNode() = default;
static CSSNumericType numeric_type_from_calculated_style_value(CalculatedStyleValue::CalculationResult::Value const& value, CalculationContext const& context)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// Anything else is a terminal value, whose type is determined based on its CSS type.
// (Unless otherwise specified, the types associated percent hint is null.)
return value.visit(
[](Number const&) {
// -> <number>
// -> <integer>
// the type is «[ ]» (empty map)
return CSSNumericType {};
},
[](Length const&) {
// -> <length>
// the type is «[ "length" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Length, 1 };
},
[](Angle const&) {
// -> <angle>
// the type is «[ "angle" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Angle, 1 };
},
[](Time const&) {
// -> <time>
// the type is «[ "time" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Time, 1 };
},
[](Frequency const&) {
// -> <frequency>
// the type is «[ "frequency" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Frequency, 1 };
},
[](Resolution const&) {
// -> <resolution>
// the type is «[ "resolution" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Resolution, 1 };
},
[](Flex const&) {
// -> <flex>
// the type is «[ "flex" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Flex, 1 };
},
// NOTE: <calc-constant> is a separate node type. (FIXME: Should it be?)
[&context](Percentage const&) {
// -> <percentage>
// If, in the context in which the math function containing this calculation is placed,
// <percentage>s are resolved relative to another type of value (such as in width,
// where <percentage> is resolved against a <length>), and that other type is not <number>,
// the type is determined as the other type, but with a percent hint set to that other type.
if (context.percentages_resolve_as.has_value() && context.percentages_resolve_as != ValueType::Number && context.percentages_resolve_as != ValueType::Percentage) {
auto base_type = CSSNumericType::base_type_from_value_type(*context.percentages_resolve_as);
VERIFY(base_type.has_value());
auto result = CSSNumericType { base_type.value(), 1 };
result.set_percent_hint(base_type);
return result;
}
// Otherwise, the type is «[ "percent" → 1 ]», with a percent hint of "percent".
auto result = CSSNumericType { CSSNumericType::BaseType::Percent, 1 };
// FIXME: Setting the percent hint to "percent" causes us to fail tests.
// result.set_percent_hint(CSSNumericType::BaseType::Percent);
return result;
});
}
NonnullOwnPtr<NumericCalculationNode> NumericCalculationNode::create(NumericValue value, CalculationContext const& context)
{
auto numeric_type = numeric_type_from_calculated_style_value(value, context);
return adopt_own(*new (nothrow) NumericCalculationNode(move(value), numeric_type));
}
NumericCalculationNode::NumericCalculationNode(NumericValue value, CSSNumericType numeric_type)
: CalculationNode(Type::Numeric, move(numeric_type))
, m_value(move(value))
{
}
NumericCalculationNode::~NumericCalculationNode() = default;
String NumericCalculationNode::to_string() const
{
return m_value.visit([](auto& value) { return value.to_string(); });
}
bool NumericCalculationNode::contains_percentage() const
{
return m_value.has<Percentage>();
}
CalculatedStyleValue::CalculationResult NumericCalculationNode::resolve(CalculationResolutionContext const& context) const
{
if (m_value.has<Percentage>()) {
// NOTE: Depending on whether percentage_basis is set, the caller of resolve() is expecting a raw percentage or
// resolved type.
return context.percentage_basis.visit(
[&](Empty const&) {
VERIFY(numeric_type_from_calculated_style_value(m_value, {}) == numeric_type());
return CalculatedStyleValue::CalculationResult::from_value(m_value, context, numeric_type());
},
[&](auto const& value) {
auto const calculated_value = value.percentage_of(m_value.get<Percentage>());
return CalculatedStyleValue::CalculationResult::from_value(calculated_value, context, numeric_type_from_calculated_style_value(calculated_value, {}));
});
}
return CalculatedStyleValue::CalculationResult::from_value(m_value, context, numeric_type());
}
void NumericCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}NUMERIC({})\n", "", indent, m_value.visit([](auto& it) { return it.to_string(); }));
}
bool NumericCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value == static_cast<NumericCalculationNode const&>(other).m_value;
}
NonnullOwnPtr<SumCalculationNode> SumCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// At a + or - sub-expression, attempt to add the types of the left and right arguments.
// If this returns failure, the entire calculations type is failure.
// Otherwise, the sub-expressions type is the returned type.
auto numeric_type = add_the_types(values);
return adopt_own(*new (nothrow) SumCalculationNode(move(values), move(numeric_type)));
}
SumCalculationNode::SumCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Sum, move(numeric_type))
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
SumCalculationNode::~SumCalculationNode() = default;
String SumCalculationNode::to_string() const
{
bool first = true;
StringBuilder builder;
for (auto& value : m_values) {
if (!first)
builder.append(" + "sv);
builder.append(value->to_string());
first = false;
}
return MUST(builder.to_string());
}
bool SumCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult SumCalculationNode::resolve(CalculationResolutionContext const& context) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(context);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->add(additional_value);
}
return total.value();
}
void SumCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}SUM:\n", "", indent);
for (auto const& item : m_values)
item->dump(builder, indent + 2);
}
bool SumCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<SumCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<SumCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<ProductCalculationNode> ProductCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// At a * sub-expression, multiply the types of the left and right arguments.
// The sub-expressions type is the returned result.
auto numeric_type = multiply_the_types(values);
return adopt_own(*new (nothrow) ProductCalculationNode(move(values), move(numeric_type)));
}
ProductCalculationNode::ProductCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Product, move(numeric_type))
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
ProductCalculationNode::~ProductCalculationNode() = default;
String ProductCalculationNode::to_string() const
{
bool first = true;
StringBuilder builder;
for (auto& value : m_values) {
if (!first)
builder.append(" * "sv);
builder.append(value->to_string());
first = false;
}
return MUST(builder.to_string());
}
bool ProductCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult ProductCalculationNode::resolve(CalculationResolutionContext const& context) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(context);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->multiply_by(additional_value);
}
return total.value();
}
void ProductCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}PRODUCT:\n", "", indent);
for (auto const& item : m_values)
item->dump(builder, indent + 2);
}
bool ProductCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<ProductCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<ProductCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<NegateCalculationNode> NegateCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) NegateCalculationNode(move(value)));
}
NegateCalculationNode::NegateCalculationNode(NonnullOwnPtr<CalculationNode> value)
// NOTE: `- foo` doesn't change the type
: CalculationNode(Type::Negate, value->numeric_type())
, m_value(move(value))
{
}
NegateCalculationNode::~NegateCalculationNode() = default;
String NegateCalculationNode::to_string() const
{
return MUST(String::formatted("(0 - {})", m_value->to_string()));
}
bool NegateCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult NegateCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto child_value = m_value->resolve(context);
child_value.negate();
return child_value;
}
void NegateCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}NEGATE:\n", "", indent);
m_value->dump(builder, indent + 2);
}
bool NegateCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<NegateCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<InvertCalculationNode> InvertCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// At a / sub-expression, let left type be the result of finding the types of its left argument,
// and right type be the result of finding the types of its right argument and then inverting it.
// The sub-expressions type is the result of multiplying the left type and right type.
// NOTE: An InvertCalculationNode only represents the right argument here, and the multiplication
// is handled in the parent ProductCalculationNode.
auto numeric_type = value->numeric_type().map([](auto& it) { return it.inverted(); });
return adopt_own(*new (nothrow) InvertCalculationNode(move(value), move(numeric_type)));
}
InvertCalculationNode::InvertCalculationNode(NonnullOwnPtr<CalculationNode> value, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Invert, move(numeric_type))
, m_value(move(value))
{
}
InvertCalculationNode::~InvertCalculationNode() = default;
String InvertCalculationNode::to_string() const
{
return MUST(String::formatted("(1 / {})", m_value->to_string()));
}
bool InvertCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult InvertCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto child_value = m_value->resolve(context);
child_value.invert();
return child_value;
}
void InvertCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}INVERT:\n", "", indent);
m_value->dump(builder, indent + 2);
}
bool InvertCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<InvertCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<MinCalculationNode> MinCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(values);
return adopt_own(*new (nothrow) MinCalculationNode(move(values), move(numeric_type)));
}
MinCalculationNode::MinCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Min, move(numeric_type))
, m_values(move(values))
{
}
MinCalculationNode::~MinCalculationNode() = default;
String MinCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("min("sv);
for (size_t i = 0; i < m_values.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(m_values[i]->to_string());
}
builder.append(")"sv);
return MUST(builder.to_string());
}
bool MinCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult MinCalculationNode::resolve(CalculationResolutionContext const& context) const
{
CalculatedStyleValue::CalculationResult smallest_node = m_values.first()->resolve(context);
auto smallest_value = smallest_node.value();
for (size_t i = 1; i < m_values.size(); i++) {
auto child_resolved = m_values[i]->resolve(context);
auto child_value = child_resolved.value();
if (child_value < smallest_value) {
smallest_value = child_value;
smallest_node = child_resolved;
}
}
return smallest_node;
}
void MinCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MIN:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool MinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<MinCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<MinCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<MaxCalculationNode> MaxCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(values);
return adopt_own(*new (nothrow) MaxCalculationNode(move(values), move(numeric_type)));
}
MaxCalculationNode::MaxCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Max, move(numeric_type))
, m_values(move(values))
{
}
MaxCalculationNode::~MaxCalculationNode() = default;
String MaxCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("max("sv);
for (size_t i = 0; i < m_values.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(m_values[i]->to_string());
}
builder.append(")"sv);
return MUST(builder.to_string());
}
bool MaxCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult MaxCalculationNode::resolve(CalculationResolutionContext const& context) const
{
CalculatedStyleValue::CalculationResult largest_node = m_values.first()->resolve(context);
auto largest_value = largest_node.value();
for (size_t i = 1; i < m_values.size(); i++) {
auto child_resolved = m_values[i]->resolve(context);
auto child_value = child_resolved.value();
if (child_value > largest_value) {
largest_value = child_value;
largest_node = child_resolved;
}
}
return largest_node;
}
void MaxCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MAX:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool MaxCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<MaxCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<MaxCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<ClampCalculationNode> ClampCalculationNode::create(NonnullOwnPtr<CalculationNode> min, NonnullOwnPtr<CalculationNode> center, NonnullOwnPtr<CalculationNode> max)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*min, *center, *max);
return adopt_own(*new (nothrow) ClampCalculationNode(move(min), move(center), move(max), move(numeric_type)));
}
ClampCalculationNode::ClampCalculationNode(NonnullOwnPtr<CalculationNode> min, NonnullOwnPtr<CalculationNode> center, NonnullOwnPtr<CalculationNode> max, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Clamp, move(numeric_type))
, m_min_value(move(min))
, m_center_value(move(center))
, m_max_value(move(max))
{
}
ClampCalculationNode::~ClampCalculationNode() = default;
String ClampCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("clamp("sv);
builder.append(m_min_value->to_string());
builder.append(", "sv);
builder.append(m_center_value->to_string());
builder.append(", "sv);
builder.append(m_max_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool ClampCalculationNode::contains_percentage() const
{
return m_min_value->contains_percentage() || m_center_value->contains_percentage() || m_max_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult ClampCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto min_node = m_min_value->resolve(context);
auto center_node = m_center_value->resolve(context);
auto max_node = m_max_value->resolve(context);
auto min_value = min_node.value();
auto center_value = center_node.value();
auto max_value = max_node.value();
// NOTE: The value should be returned as "max(MIN, min(VAL, MAX))"
auto chosen_value = max(min_value, min(center_value, max_value));
if (chosen_value == min_value)
return min_node;
if (chosen_value == center_value)
return center_node;
if (chosen_value == max_value)
return max_node;
VERIFY_NOT_REACHED();
}
void ClampCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}CLAMP:\n", "", indent);
m_min_value->dump(builder, indent + 2);
m_center_value->dump(builder, indent + 2);
m_max_value->dump(builder, indent + 2);
}
bool ClampCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_min_value->equals(*static_cast<ClampCalculationNode const&>(other).m_min_value)
&& m_center_value->equals(*static_cast<ClampCalculationNode const&>(other).m_center_value)
&& m_max_value->equals(*static_cast<ClampCalculationNode const&>(other).m_max_value);
}
NonnullOwnPtr<AbsCalculationNode> AbsCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) AbsCalculationNode(move(value)));
}
AbsCalculationNode::AbsCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The type of its contained calculation.
: CalculationNode(Type::Abs, value->numeric_type())
, m_value(move(value))
{
}
AbsCalculationNode::~AbsCalculationNode() = default;
String AbsCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("abs("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool AbsCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AbsCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
if (node_a.value() < 0)
node_a.negate();
return node_a;
}
void AbsCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}ABS: {}\n", "", indent, to_string());
}
bool AbsCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AbsCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<SignCalculationNode> SignCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) SignCalculationNode(move(value)));
}
SignCalculationNode::SignCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Sign, CSSNumericType {})
, m_value(move(value))
{
}
SignCalculationNode::~SignCalculationNode() = default;
String SignCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("sign("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool SignCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult SignCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto node_a_value = node_a.value();
if (node_a_value < 0)
return { -1, CSSNumericType {} };
if (node_a_value > 0)
return { 1, CSSNumericType {} };
return { 0, CSSNumericType {} };
}
void SignCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}SIGN: {}\n", "", indent, to_string());
}
bool SignCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SignCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<ConstantCalculationNode> ConstantCalculationNode::create(ConstantType constant)
{
return adopt_own(*new (nothrow) ConstantCalculationNode(constant));
}
ConstantCalculationNode::ConstantCalculationNode(ConstantType constant)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// Anything else is a terminal value, whose type is determined based on its CSS type:
// -> <calc-constant>
// the type is «[ ]» (empty map)
: CalculationNode(Type::Constant, CSSNumericType {})
, m_constant(constant)
{
}
ConstantCalculationNode::~ConstantCalculationNode() = default;
String ConstantCalculationNode::to_string() const
{
switch (m_constant) {
case CalculationNode::ConstantType::E:
return "e"_string;
case CalculationNode::ConstantType::Pi:
return "pi"_string;
case CalculationNode::ConstantType::Infinity:
return "infinity"_string;
case CalculationNode::ConstantType::MinusInfinity:
return "-infinity"_string;
case CalculationNode::ConstantType::NaN:
return "NaN"_string;
}
VERIFY_NOT_REACHED();
}
CalculatedStyleValue::CalculationResult ConstantCalculationNode::resolve(CalculationResolutionContext const&) const
{
switch (m_constant) {
case ConstantType::E:
return { AK::E<double>, CSSNumericType {} };
case ConstantType::Pi:
return { AK::Pi<double>, CSSNumericType {} };
// FIXME: We need to keep track of Infinity and NaN across all nodes, since they require special handling.
case ConstantType::Infinity:
return { NumericLimits<double>::max(), CSSNumericType {} };
case ConstantType::MinusInfinity:
return { NumericLimits<double>::lowest(), CSSNumericType {} };
case ConstantType::NaN:
return { AK::NaN<double>, CSSNumericType {} };
}
VERIFY_NOT_REACHED();
}
void ConstantCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}CONSTANT: {}\n", "", indent, to_string());
}
bool ConstantCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_constant == static_cast<ConstantCalculationNode const&>(other).m_constant;
}
NonnullOwnPtr<SinCalculationNode> SinCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) SinCalculationNode(move(value)));
}
SinCalculationNode::SinCalculationNode(NonnullOwnPtr<CalculationNode> value)
// «[ ]» (empty map).
: CalculationNode(Type::Sin, CSSNumericType {})
, m_value(move(value))
{
}
SinCalculationNode::~SinCalculationNode() = default;
String SinCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("sin("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool SinCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult SinCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto node_a_value = AK::to_radians(node_a.value());
auto result = sin(node_a_value);
return { result, CSSNumericType {} };
}
void SinCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}SIN: {}\n", "", indent, to_string());
}
bool SinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SinCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<CosCalculationNode> CosCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) CosCalculationNode(move(value)));
}
CosCalculationNode::CosCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Cos, CSSNumericType {})
, m_value(move(value))
{
}
CosCalculationNode::~CosCalculationNode() = default;
String CosCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("cos("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool CosCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult CosCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto node_a_value = AK::to_radians(node_a.value());
auto result = cos(node_a_value);
return { result, CSSNumericType {} };
}
void CosCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}COS: {}\n", "", indent, to_string());
}
bool CosCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<CosCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<TanCalculationNode> TanCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) TanCalculationNode(move(value)));
}
TanCalculationNode::TanCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Tan, CSSNumericType {})
, m_value(move(value))
{
}
TanCalculationNode::~TanCalculationNode() = default;
String TanCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("tan("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool TanCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult TanCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto node_a_value = AK::to_radians(node_a.value());
auto result = tan(node_a_value);
return { result, CSSNumericType {} };
}
void TanCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}TAN: {}\n", "", indent, to_string());
}
bool TanCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<TanCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<AsinCalculationNode> AsinCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) AsinCalculationNode(move(value)));
}
AsinCalculationNode::AsinCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Asin, CSSNumericType { CSSNumericType::BaseType::Angle, 1 })
, m_value(move(value))
{
}
AsinCalculationNode::~AsinCalculationNode() = default;
String AsinCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("asin("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool AsinCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AsinCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto result = AK::to_degrees(asin(node_a.value()));
return { result, CSSNumericType { CSSNumericType::BaseType::Angle, 1 } };
}
void AsinCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}ASIN: {}\n", "", indent, to_string());
}
bool AsinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AsinCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<AcosCalculationNode> AcosCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) AcosCalculationNode(move(value)));
}
AcosCalculationNode::AcosCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Acos, CSSNumericType { CSSNumericType::BaseType::Angle, 1 })
, m_value(move(value))
{
}
AcosCalculationNode::~AcosCalculationNode() = default;
String AcosCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("acos("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool AcosCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AcosCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto result = AK::to_degrees(acos(node_a.value()));
return { result, CSSNumericType { CSSNumericType::BaseType::Angle, 1 } };
}
void AcosCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}ACOS: {}\n", "", indent, to_string());
}
bool AcosCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AcosCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<AtanCalculationNode> AtanCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) AtanCalculationNode(move(value)));
}
AtanCalculationNode::AtanCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Atan, CSSNumericType { CSSNumericType::BaseType::Angle, 1 })
, m_value(move(value))
{
}
AtanCalculationNode::~AtanCalculationNode() = default;
String AtanCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("atan("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool AtanCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AtanCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto result = AK::to_degrees(atan(node_a.value()));
return { result, CSSNumericType { CSSNumericType::BaseType::Angle, 1 } };
}
void AtanCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}ATAN: {}\n", "", indent, to_string());
}
bool AtanCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AtanCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<Atan2CalculationNode> Atan2CalculationNode::create(NonnullOwnPtr<CalculationNode> y, NonnullOwnPtr<CalculationNode> x)
{
return adopt_own(*new (nothrow) Atan2CalculationNode(move(y), move(x)));
}
Atan2CalculationNode::Atan2CalculationNode(NonnullOwnPtr<CalculationNode> y, NonnullOwnPtr<CalculationNode> x)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Atan2, CSSNumericType { CSSNumericType::BaseType::Angle, 1 })
, m_y(move(y))
, m_x(move(x))
{
}
Atan2CalculationNode::~Atan2CalculationNode() = default;
String Atan2CalculationNode::to_string() const
{
StringBuilder builder;
builder.append("atan2("sv);
builder.append(m_y->to_string());
builder.append(", "sv);
builder.append(m_x->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool Atan2CalculationNode::contains_percentage() const
{
return m_y->contains_percentage() || m_x->contains_percentage();
}
CalculatedStyleValue::CalculationResult Atan2CalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_y->resolve(context);
auto node_b = m_x->resolve(context);
auto result = AK::to_degrees(atan2(node_a.value(), node_b.value()));
return { result, CSSNumericType { CSSNumericType::BaseType::Angle, 1 } };
}
void Atan2CalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}ATAN2: {}\n", "", indent, to_string());
}
bool Atan2CalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<Atan2CalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<Atan2CalculationNode const&>(other).m_y);
}
NonnullOwnPtr<PowCalculationNode> PowCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
{
return adopt_own(*new (nothrow) PowCalculationNode(move(x), move(y)));
}
PowCalculationNode::PowCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Pow, CSSNumericType {})
, m_x(move(x))
, m_y(move(y))
{
}
PowCalculationNode::~PowCalculationNode() = default;
String PowCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("pow("sv);
builder.append(m_x->to_string());
builder.append(", "sv);
builder.append(m_y->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
CalculatedStyleValue::CalculationResult PowCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto result = pow(node_a.value(), node_b.value());
return { result, CSSNumericType {} };
}
void PowCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}POW: {}\n", "", indent, to_string());
}
bool PowCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<PowCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<PowCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<SqrtCalculationNode> SqrtCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) SqrtCalculationNode(move(value)));
}
SqrtCalculationNode::SqrtCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Sqrt, CSSNumericType {})
, m_value(move(value))
{
}
SqrtCalculationNode::~SqrtCalculationNode() = default;
String SqrtCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("sqrt("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
CalculatedStyleValue::CalculationResult SqrtCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto result = sqrt(node_a.value());
return { result, CSSNumericType {} };
}
void SqrtCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}SQRT: {}\n", "", indent, to_string());
}
bool SqrtCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SqrtCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<HypotCalculationNode> HypotCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(values);
return adopt_own(*new (nothrow) HypotCalculationNode(move(values), move(numeric_type)));
}
HypotCalculationNode::HypotCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Hypot, move(numeric_type))
, m_values(move(values))
{
}
HypotCalculationNode::~HypotCalculationNode() = default;
String HypotCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("hypot("sv);
for (size_t i = 0; i < m_values.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(m_values[i]->to_string());
}
builder.append(")"sv);
return MUST(builder.to_string());
}
bool HypotCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult HypotCalculationNode::resolve(CalculationResolutionContext const& context) const
{
double square_sum = 0.0;
Optional<CSSNumericType> result_type;
for (auto const& value : m_values) {
auto child_resolved = value->resolve(context);
auto child_value = child_resolved.value();
square_sum += child_value * child_value;
if (result_type.has_value()) {
result_type = result_type->consistent_type(*child_resolved.type());
} else {
result_type = child_resolved.type();
}
}
auto result = sqrt(square_sum);
return { result, result_type };
}
void HypotCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}HYPOT:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool HypotCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<HypotCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<LogCalculationNode> LogCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
{
return adopt_own(*new (nothrow) LogCalculationNode(move(x), move(y)));
}
LogCalculationNode::LogCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Log, CSSNumericType {})
, m_x(move(x))
, m_y(move(y))
{
}
LogCalculationNode::~LogCalculationNode() = default;
String LogCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("log("sv);
builder.append(m_x->to_string());
builder.append(", "sv);
builder.append(m_y->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
CalculatedStyleValue::CalculationResult LogCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto result = log2(node_a.value()) / log2(node_b.value());
return { result, CSSNumericType {} };
}
void LogCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}LOG: {}\n", "", indent, to_string());
}
bool LogCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<LogCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<LogCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<ExpCalculationNode> ExpCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
{
return adopt_own(*new (nothrow) ExpCalculationNode(move(value)));
}
ExpCalculationNode::ExpCalculationNode(NonnullOwnPtr<CalculationNode> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Exp, CSSNumericType {})
, m_value(move(value))
{
}
ExpCalculationNode::~ExpCalculationNode() = default;
String ExpCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("exp("sv);
builder.append(m_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
CalculatedStyleValue::CalculationResult ExpCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_value->resolve(context);
auto result = exp(node_a.value());
return { result, CSSNumericType {} };
}
void ExpCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}EXP: {}\n", "", indent, to_string());
}
bool ExpCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<ExpCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<RoundCalculationNode> RoundCalculationNode::create(RoundingStrategy strategy, NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*x, *y);
return adopt_own(*new (nothrow) RoundCalculationNode(strategy, move(x), move(y), move(numeric_type)));
}
RoundCalculationNode::RoundCalculationNode(RoundingStrategy mode, NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Round, move(numeric_type))
, m_strategy(mode)
, m_x(move(x))
, m_y(move(y))
{
}
RoundCalculationNode::~RoundCalculationNode() = default;
String RoundCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("round("sv);
builder.append(CSS::to_string(m_strategy));
builder.append(", "sv);
builder.append(m_x->to_string());
builder.append(", "sv);
builder.append(m_y->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool RoundCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult RoundCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto node_a_value = node_a.value();
auto node_b_value = node_b.value();
auto upper_b = ceil(node_a_value / node_b_value) * node_b_value;
auto lower_b = floor(node_a_value / node_b_value) * node_b_value;
auto resolved_type = node_a.type()->consistent_type(*node_b.type());
if (m_strategy == RoundingStrategy::Nearest) {
auto upper_diff = fabs(upper_b - node_a_value);
auto lower_diff = fabs(node_a_value - lower_b);
auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b;
return { rounded_value, resolved_type };
}
if (m_strategy == RoundingStrategy::Up) {
return { upper_b, resolved_type };
}
if (m_strategy == RoundingStrategy::Down) {
return { lower_b, resolved_type };
}
if (m_strategy == RoundingStrategy::ToZero) {
auto upper_diff = fabs(upper_b);
auto lower_diff = fabs(lower_b);
auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b;
return { rounded_value, resolved_type };
}
VERIFY_NOT_REACHED();
}
void RoundCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}ROUND: {}\n", "", indent, to_string());
}
bool RoundCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_strategy == static_cast<RoundCalculationNode const&>(other).m_strategy
&& m_x->equals(*static_cast<RoundCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<RoundCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<ModCalculationNode> ModCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*x, *y);
return adopt_own(*new (nothrow) ModCalculationNode(move(x), move(y), move(numeric_type)));
}
ModCalculationNode::ModCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Mod, move(numeric_type))
, m_x(move(x))
, m_y(move(y))
{
}
ModCalculationNode::~ModCalculationNode() = default;
String ModCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("mod("sv);
builder.append(m_x->to_string());
builder.append(", "sv);
builder.append(m_y->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool ModCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult ModCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto node_a_value = node_a.value();
auto node_b_value = node_b.value();
auto quotient = floor(node_a_value / node_b_value);
auto value = node_a_value - (node_b_value * quotient);
return { value, node_a.type() };
}
void ModCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MOD: {}\n", "", indent, to_string());
}
bool ModCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<ModCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<ModCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<RemCalculationNode> RemCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*x, *y);
return adopt_own(*new (nothrow) RemCalculationNode(move(x), move(y), move(numeric_type)));
}
RemCalculationNode::RemCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y, Optional<CSSNumericType> numeric_type)
: CalculationNode(Type::Rem, move(numeric_type))
, m_x(move(x))
, m_y(move(y))
{
}
RemCalculationNode::~RemCalculationNode() = default;
String RemCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("rem("sv);
builder.append(m_x->to_string());
builder.append(", "sv);
builder.append(m_y->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
bool RemCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult RemCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto value = fmod(node_a.value(), node_b.value());
return { value, node_a.type() };
}
void RemCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}REM: {}\n", "", indent, to_string());
}
bool RemCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<RemCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<RemCalculationNode const&>(other).m_y);
}
CalculatedStyleValue::CalculationResult CalculatedStyleValue::CalculationResult::from_value(Value const& value, CalculationResolutionContext const& context, Optional<CSSNumericType> numeric_type)
{
auto const expected_numeric_type = numeric_type_from_calculated_style_value(value, {});
if (numeric_type.has_value()) {
VERIFY(numeric_type.value() == expected_numeric_type);
}
auto number = value.visit(
[](Number const& number) { return number.value(); },
[](Angle const& angle) { return angle.to_degrees(); },
[](Flex const& flex) { return flex.to_fr(); },
[](Frequency const& frequency) { return frequency.to_hertz(); },
[&context](Length const& length) {
// Handle some common cases first, so we can resolve more without a context
if (length.is_auto())
return 0.0;
if (length.is_absolute())
return length.absolute_length_to_px().to_double();
// If we don't have a context, we cant resolve the length, so return NAN
if (!context.length_resolution_context.has_value()) {
dbgln("Failed to resolve length, likely due to calc() being used with relative units and a property not taking it into account");
return AK::NaN<double>;
}
return length.to_px(context.length_resolution_context.value()).to_double();
},
[](Resolution const& resolution) { return resolution.to_dots_per_pixel(); },
[](Time const& time) { return time.to_seconds(); },
[](Percentage const& percentage) { return percentage.value(); });
return CalculationResult { number, numeric_type };
}
void CalculatedStyleValue::CalculationResult::add(CalculationResult const& other)
{
m_value = m_value + other.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->added_to(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::subtract(CalculationResult const& other)
{
m_value = m_value - other.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->added_to(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::multiply_by(CalculationResult const& other)
{
m_value = m_value * other.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->multiplied_by(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::divide_by(CalculationResult const& other)
{
auto other_copy = other;
other_copy.invert();
m_value = m_value * other_copy.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->multiplied_by(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::negate()
{
m_value = 0 - m_value;
}
void CalculatedStyleValue::CalculationResult::invert()
{
// FIXME: Correctly handle division by zero.
m_value = 1.0 / m_value;
if (m_type.has_value())
m_type = m_type->inverted();
}
String CalculatedStyleValue::to_string(SerializationMode) const
{
// FIXME: Implement this according to https://www.w3.org/TR/css-values-4/#calc-serialize once that stabilizes.
return MUST(String::formatted("calc({})", m_calculation->to_string()));
}
bool CalculatedStyleValue::equals(CSSStyleValue const& other) const
{
if (type() != other.type())
return false;
return m_calculation->equals(*other.as_calculated().m_calculation);
}
Optional<Angle> CalculatedStyleValue::resolve_angle(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_angle(m_context.percentages_resolve_as))
return Angle::make_degrees(result.value());
return {};
}
Optional<Flex> CalculatedStyleValue::resolve_flex(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_flex(m_context.percentages_resolve_as))
return Flex::make_fr(result.value());
return {};
}
Optional<Frequency> CalculatedStyleValue::resolve_frequency(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_frequency(m_context.percentages_resolve_as))
return Frequency::make_hertz(result.value());
return {};
}
Optional<Length> CalculatedStyleValue::resolve_length(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_length(m_context.percentages_resolve_as))
return Length::make_px(CSSPixels { result.value() });
return {};
}
Optional<Percentage> CalculatedStyleValue::resolve_percentage(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_percentage())
return Percentage { result.value() };
return {};
}
Optional<Resolution> CalculatedStyleValue::resolve_resolution(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_resolution(m_context.percentages_resolve_as))
return Resolution::make_dots_per_pixel(result.value());
return {};
}
Optional<Time> CalculatedStyleValue::resolve_time(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_time(m_context.percentages_resolve_as))
return Time::make_seconds(result.value());
return {};
}
Optional<double> CalculatedStyleValue::resolve_number(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_number(m_context.percentages_resolve_as))
return result.value();
return {};
}
Optional<i64> CalculatedStyleValue::resolve_integer(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_number(m_context.percentages_resolve_as))
return llround(result.value());
return {};
}
bool CalculatedStyleValue::contains_percentage() const
{
return m_calculation->contains_percentage();
}
String CalculatedStyleValue::dump() const
{
StringBuilder builder;
m_calculation->dump(builder, 0);
return builder.to_string_without_validation();
}
}