mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-05-14 15:13:07 +00:00
The previous clipping implementation was problematic especially when clipping against the near plane. Triangles are now correctly clipped using homogenous coordinates against all frustum planes. Texture coordinates and vertex colors are now correctly interpolated. The earier implementation was just a placeholder.
545 lines
21 KiB
C++
545 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "SoftwareRasterizer.h"
|
|
#include <AK/Function.h>
|
|
#include <LibGfx/Painter.h>
|
|
#include <LibGfx/Vector2.h>
|
|
#include <LibGfx/Vector3.h>
|
|
|
|
namespace GL {
|
|
|
|
using IntVector2 = Gfx::Vector2<int>;
|
|
using IntVector3 = Gfx::Vector3<int>;
|
|
|
|
static constexpr int RASTERIZER_BLOCK_SIZE = 16;
|
|
|
|
constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
|
|
{
|
|
return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector3& barycentric_coords)
|
|
{
|
|
return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
|
|
}
|
|
|
|
static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
|
|
{
|
|
auto clamped = v.clamped(0, 1);
|
|
u8 r = clamped.x() * 255;
|
|
u8 g = clamped.y() * 255;
|
|
u8 b = clamped.z() * 255;
|
|
u8 a = clamped.w() * 255;
|
|
return a << 24 | r << 16 | g << 8 | b;
|
|
}
|
|
|
|
static FloatVector4 to_vec4(Gfx::RGBA32 rgba)
|
|
{
|
|
return {
|
|
((rgba >> 16) & 0xff) / 255.0f,
|
|
((rgba >> 8) & 0xff) / 255.0f,
|
|
(rgba & 0xff) / 255.0f,
|
|
((rgba >> 24) & 0xff) / 255.0f
|
|
};
|
|
}
|
|
|
|
static constexpr void setup_blend_factors(GLenum mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
|
|
{
|
|
constant = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
src_alpha = 0;
|
|
dst_alpha = 0;
|
|
src_color = 0;
|
|
dst_color = 0;
|
|
|
|
switch (mode) {
|
|
case GL_ZERO:
|
|
break;
|
|
case GL_ONE:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
break;
|
|
case GL_SRC_COLOR:
|
|
src_color = 1;
|
|
break;
|
|
case GL_ONE_MINUS_SRC_COLOR:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
src_color = -1;
|
|
break;
|
|
case GL_SRC_ALPHA:
|
|
src_alpha = 1;
|
|
break;
|
|
case GL_ONE_MINUS_SRC_ALPHA:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
src_alpha = -1;
|
|
break;
|
|
case GL_DST_ALPHA:
|
|
dst_alpha = 1;
|
|
break;
|
|
case GL_ONE_MINUS_DST_ALPHA:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
dst_alpha = -1;
|
|
break;
|
|
case GL_DST_COLOR:
|
|
dst_color = 1;
|
|
break;
|
|
case GL_ONE_MINUS_DST_COLOR:
|
|
constant = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
dst_color = -1;
|
|
break;
|
|
case GL_SRC_ALPHA_SATURATE:
|
|
// FIXME: How do we implement this?
|
|
break;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
template<typename PS>
|
|
static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
|
|
{
|
|
// Since the algorithm is based on blocks of uniform size, we need
|
|
// to ensure that our render_target size is actually a multiple of the block size
|
|
VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
|
|
VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
|
|
|
|
// Calculate area of the triangle for later tests
|
|
IntVector2 v0 { (int)triangle.vertices[0].position.x(), (int)triangle.vertices[0].position.y() };
|
|
IntVector2 v1 { (int)triangle.vertices[1].position.x(), (int)triangle.vertices[1].position.y() };
|
|
IntVector2 v2 { (int)triangle.vertices[2].position.x(), (int)triangle.vertices[2].position.y() };
|
|
|
|
int area = edge_function(v0, v1, v2);
|
|
if (area == 0)
|
|
return;
|
|
|
|
float one_over_area = 1.0f / area;
|
|
|
|
FloatVector4 src_constant {};
|
|
float src_factor_src_alpha = 0;
|
|
float src_factor_dst_alpha = 0;
|
|
float src_factor_src_color = 0;
|
|
float src_factor_dst_color = 0;
|
|
|
|
FloatVector4 dst_constant {};
|
|
float dst_factor_src_alpha = 0;
|
|
float dst_factor_dst_alpha = 0;
|
|
float dst_factor_src_color = 0;
|
|
float dst_factor_dst_color = 0;
|
|
|
|
if (options.enable_blending) {
|
|
setup_blend_factors(
|
|
options.blend_source_factor,
|
|
src_constant,
|
|
src_factor_src_alpha,
|
|
src_factor_dst_alpha,
|
|
src_factor_src_color,
|
|
src_factor_dst_color);
|
|
|
|
setup_blend_factors(
|
|
options.blend_destination_factor,
|
|
dst_constant,
|
|
dst_factor_src_alpha,
|
|
dst_factor_dst_alpha,
|
|
dst_factor_src_color,
|
|
dst_factor_dst_color);
|
|
}
|
|
|
|
// Obey top-left rule:
|
|
// This sets up "zero" for later pixel coverage tests.
|
|
// Depending on where on the triangle the edge is located
|
|
// it is either tested against 0 or 1, effectively
|
|
// turning "< 0" into "<= 0"
|
|
IntVector3 zero { 1, 1, 1 };
|
|
if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
|
|
zero.set_z(0);
|
|
if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
|
|
zero.set_x(0);
|
|
if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
|
|
zero.set_y(0);
|
|
|
|
// This function calculates the 3 edge values for the pixel relative to the triangle.
|
|
auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 {
|
|
return {
|
|
edge_function(v1, v2, p),
|
|
edge_function(v2, v0, p),
|
|
edge_function(v0, v1, p),
|
|
};
|
|
};
|
|
|
|
// This function tests whether a point as identified by its 3 edge values lies within the triangle
|
|
auto test_point = [zero](const IntVector3& edges) -> bool {
|
|
return edges.x() >= zero.x()
|
|
&& edges.y() >= zero.y()
|
|
&& edges.z() >= zero.z();
|
|
};
|
|
|
|
// Calculate block-based bounds
|
|
// clang-format off
|
|
const int bx0 = max(0, min(min(v0.x(), v1.x()), v2.x()) ) / RASTERIZER_BLOCK_SIZE;
|
|
const int bx1 = min(render_target.width(), max(max(v0.x(), v1.x()), v2.x()) + RASTERIZER_BLOCK_SIZE - 1) / RASTERIZER_BLOCK_SIZE;
|
|
const int by0 = max(0, min(min(v0.y(), v1.y()), v2.y()) ) / RASTERIZER_BLOCK_SIZE;
|
|
const int by1 = min(render_target.height(), max(max(v0.y(), v1.y()), v2.y()) + RASTERIZER_BLOCK_SIZE - 1) / RASTERIZER_BLOCK_SIZE;
|
|
// clang-format on
|
|
|
|
static_assert(RASTERIZER_BLOCK_SIZE < sizeof(int) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits");
|
|
int pixel_mask[RASTERIZER_BLOCK_SIZE];
|
|
|
|
FloatVector4 pixel_buffer[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];
|
|
|
|
// Iterate over all blocks within the bounds of the triangle
|
|
for (int by = by0; by < by1; by++) {
|
|
for (int bx = bx0; bx < bx1; bx++) {
|
|
|
|
// Edge values of the 4 block corners
|
|
// clang-format off
|
|
auto b0 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
|
|
auto b1 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
|
|
auto b2 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
|
|
auto b3 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
|
|
// clang-format on
|
|
|
|
// If the whole block is outside any of the triangle edges we can discard it completely
|
|
// We test this by and'ing the relevant edge function values together for all block corners
|
|
// and checking if the negative sign bit is set for all of them
|
|
if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000)
|
|
continue;
|
|
|
|
if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000)
|
|
continue;
|
|
|
|
if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000)
|
|
continue;
|
|
|
|
// edge value derivatives
|
|
auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE;
|
|
auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE;
|
|
// step edge value after each horizontal span: 1 down, BLOCK_SIZE left
|
|
auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE;
|
|
|
|
int x0 = bx * RASTERIZER_BLOCK_SIZE;
|
|
int y0 = by * RASTERIZER_BLOCK_SIZE;
|
|
|
|
// Generate the coverage mask
|
|
if (test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) {
|
|
// The block is fully contained within the triangle. Fill the mask with all 1s
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
|
|
pixel_mask[y] = -1;
|
|
}
|
|
} else {
|
|
// The block overlaps at least one triangle edge.
|
|
// We need to test coverage of every pixel within the block.
|
|
auto coords = b0;
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
|
|
pixel_mask[y] = 0;
|
|
|
|
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) {
|
|
if (test_point(coords))
|
|
pixel_mask[y] |= 1 << x;
|
|
}
|
|
}
|
|
}
|
|
|
|
// AND the depth mask onto the coverage mask
|
|
if (options.enable_depth_test) {
|
|
int z_pass_count = 0;
|
|
auto coords = b0;
|
|
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
|
|
if (pixel_mask[y] == 0) {
|
|
coords += dbdx * RASTERIZER_BLOCK_SIZE;
|
|
continue;
|
|
}
|
|
|
|
auto* depth = &depth_buffer.scanline(y0 + y)[x0];
|
|
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) {
|
|
if (~pixel_mask[y] & (1 << x))
|
|
continue;
|
|
|
|
auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
|
|
float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);
|
|
|
|
z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;
|
|
|
|
bool pass = false;
|
|
switch (options.depth_func) {
|
|
case GL_ALWAYS:
|
|
pass = true;
|
|
break;
|
|
case GL_NEVER:
|
|
pass = false;
|
|
break;
|
|
case GL_GREATER:
|
|
pass = z > *depth;
|
|
break;
|
|
case GL_GEQUAL:
|
|
pass = z >= *depth;
|
|
break;
|
|
case GL_NOTEQUAL:
|
|
pass = z != *depth;
|
|
break;
|
|
case GL_EQUAL:
|
|
pass = z == *depth;
|
|
break;
|
|
case GL_LEQUAL:
|
|
pass = z <= *depth;
|
|
break;
|
|
case GL_LESS:
|
|
pass = z < *depth;
|
|
break;
|
|
}
|
|
|
|
if (!pass) {
|
|
pixel_mask[y] ^= 1 << x;
|
|
continue;
|
|
}
|
|
|
|
if (options.enable_depth_write)
|
|
*depth = z;
|
|
|
|
z_pass_count++;
|
|
}
|
|
}
|
|
|
|
// Nice, no pixels passed the depth test -> block rejected by early z
|
|
if (z_pass_count == 0)
|
|
continue;
|
|
}
|
|
|
|
// Draw the pixels according to the previously generated mask
|
|
auto coords = b0;
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
|
|
if (pixel_mask[y] == 0) {
|
|
coords += dbdx * RASTERIZER_BLOCK_SIZE;
|
|
continue;
|
|
}
|
|
|
|
auto* pixel = pixel_buffer[y];
|
|
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, pixel++) {
|
|
if (~pixel_mask[y] & (1 << x))
|
|
continue;
|
|
|
|
// Perspective correct barycentric coordinates
|
|
auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
|
|
float interpolated_reciprocal_w = interpolate(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w(), barycentric);
|
|
float interpolated_w = 1 / interpolated_reciprocal_w;
|
|
barycentric = barycentric * FloatVector3(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w()) * interpolated_w;
|
|
|
|
// FIXME: make this more generic. We want to interpolate more than just color and uv
|
|
FloatVector4 vertex_color;
|
|
if (options.shade_smooth) {
|
|
vertex_color = interpolate(
|
|
triangle.vertices[0].color,
|
|
triangle.vertices[1].color,
|
|
triangle.vertices[2].color,
|
|
barycentric);
|
|
} else {
|
|
vertex_color = triangle.vertices[0].color;
|
|
}
|
|
|
|
auto uv = interpolate(
|
|
triangle.vertices[0].tex_coord,
|
|
triangle.vertices[1].tex_coord,
|
|
triangle.vertices[2].tex_coord,
|
|
barycentric);
|
|
|
|
*pixel = pixel_shader(uv, vertex_color);
|
|
}
|
|
}
|
|
|
|
if (options.enable_alpha_test && options.alpha_test_func != GL_ALWAYS) {
|
|
// FIXME: I'm not sure if this is the right place to test this.
|
|
// If we tested this right at the beginning of our rasterizer routine
|
|
// we could skip a lot of work but the GL spec might disagree.
|
|
if (options.alpha_test_func == GL_NEVER)
|
|
continue;
|
|
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
|
|
auto src = pixel_buffer[y];
|
|
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) {
|
|
if (~pixel_mask[y] & (1 << x))
|
|
continue;
|
|
|
|
bool passed = true;
|
|
|
|
switch (options.alpha_test_func) {
|
|
case GL_LESS:
|
|
passed = src->w() < options.alpha_test_ref_value;
|
|
break;
|
|
case GL_EQUAL:
|
|
passed = src->w() == options.alpha_test_ref_value;
|
|
break;
|
|
case GL_LEQUAL:
|
|
passed = src->w() <= options.alpha_test_ref_value;
|
|
break;
|
|
case GL_GREATER:
|
|
passed = src->w() > options.alpha_test_ref_value;
|
|
break;
|
|
case GL_NOTEQUAL:
|
|
passed = src->w() != options.alpha_test_ref_value;
|
|
break;
|
|
case GL_GEQUAL:
|
|
passed = src->w() >= options.alpha_test_ref_value;
|
|
break;
|
|
}
|
|
|
|
if (!passed)
|
|
pixel_mask[y] ^= (1 << x);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (options.enable_blending) {
|
|
// Blend color values from pixel_buffer into render_target
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
|
|
auto src = pixel_buffer[y];
|
|
auto dst = &render_target.scanline(y + y0)[x0];
|
|
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
|
|
if (~pixel_mask[y] & (1 << x))
|
|
continue;
|
|
|
|
auto float_dst = to_vec4(*dst);
|
|
|
|
auto src_factor = src_constant
|
|
+ *src * src_factor_src_color
|
|
+ FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha
|
|
+ float_dst * src_factor_dst_color
|
|
+ FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha;
|
|
|
|
auto dst_factor = dst_constant
|
|
+ *src * dst_factor_src_color
|
|
+ FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha
|
|
+ float_dst * dst_factor_dst_color
|
|
+ FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha;
|
|
|
|
*dst = (*dst & ~options.color_mask) | (to_rgba32(*src * src_factor + float_dst * dst_factor) & options.color_mask);
|
|
}
|
|
}
|
|
} else {
|
|
// Copy color values from pixel_buffer into render_target
|
|
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
|
|
auto src = pixel_buffer[y];
|
|
auto dst = &render_target.scanline(y + y0)[x0];
|
|
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
|
|
if (~pixel_mask[y] & (1 << x))
|
|
continue;
|
|
|
|
*dst = (*dst & ~options.color_mask) | (to_rgba32(*src) & options.color_mask);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
|
|
{
|
|
int width = ((min_size.width() + step - 1) / step) * step;
|
|
int height = ((min_size.height() + step - 1) / step) * step;
|
|
return { width, height };
|
|
}
|
|
|
|
SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
|
|
: m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) }
|
|
, m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
|
|
{
|
|
}
|
|
|
|
void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle)
|
|
{
|
|
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector2&, const FloatVector4& color) -> FloatVector4 {
|
|
return color;
|
|
});
|
|
}
|
|
|
|
void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle, const Array<TextureUnit, 32>& texture_units)
|
|
{
|
|
rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [&texture_units](const FloatVector2& uv, const FloatVector4& color) -> FloatVector4 {
|
|
// TODO: We'd do some kind of multitexturing/blending here
|
|
// Construct a vector for the texel we want to sample
|
|
FloatVector4 texel = color;
|
|
|
|
for (const auto& texture_unit : texture_units) {
|
|
|
|
// No texture is bound to this texture unit
|
|
if (!texture_unit.is_bound())
|
|
continue;
|
|
|
|
// FIXME: Don't assume Texture2D, _and_ work out how we blend/do multitexturing properly.....
|
|
texel = texel * static_ptr_cast<Texture2D>(texture_unit.bound_texture())->sampler().sample(uv);
|
|
}
|
|
|
|
return texel;
|
|
});
|
|
}
|
|
|
|
void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE));
|
|
m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
|
|
}
|
|
|
|
void SoftwareRasterizer::clear_color(const FloatVector4& color)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
|
|
uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
|
|
uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
|
|
uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
|
|
|
|
m_render_target->fill(Gfx::Color(r, g, b, a));
|
|
}
|
|
|
|
void SoftwareRasterizer::clear_depth(float depth)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_depth_buffer->clear(depth);
|
|
}
|
|
|
|
void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
Gfx::Painter painter { target };
|
|
painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
|
|
}
|
|
|
|
void SoftwareRasterizer::wait_for_all_threads() const
|
|
{
|
|
// FIXME: Wait for all render threads to finish when multithreading is being implemented
|
|
}
|
|
|
|
void SoftwareRasterizer::set_options(const RasterizerOptions& options)
|
|
{
|
|
wait_for_all_threads();
|
|
|
|
m_options = options;
|
|
|
|
// FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
|
|
}
|
|
|
|
Gfx::RGBA32 SoftwareRasterizer::get_backbuffer_pixel(int x, int y)
|
|
{
|
|
// FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
|
|
if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
|
|
return 0;
|
|
|
|
return m_render_target->scanline(y)[x];
|
|
}
|
|
|
|
float SoftwareRasterizer::get_depthbuffer_value(int x, int y)
|
|
{
|
|
// FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
|
|
if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
|
|
return 1.0f;
|
|
|
|
return m_depth_buffer->scanline(y)[x];
|
|
}
|
|
|
|
}
|