ladybird/Libraries/LibJS/Runtime/MathObject.cpp
Brian Gianforcaro 240a5b5fd7 LibJS: Add support for Math.ceil() and Math.trunc()
Introduce support for the both of these Math methods.
Math.trunc is implemented in terms of Math.ceil or Math.floor
based on the input value. Added tests as well.
2020-04-05 10:56:23 +02:00

157 lines
4.7 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/FlyString.h>
#include <AK/Function.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/MathObject.h>
#include <math.h>
namespace JS {
MathObject::MathObject()
{
put_native_function("abs", abs, 1);
put_native_function("random", random);
put_native_function("sqrt", sqrt, 1);
put_native_function("floor", floor, 1);
put_native_function("ceil", ceil, 1);
put_native_function("round", round, 1);
put_native_function("max", max, 2);
put_native_function("trunc", trunc, 1);
put("E", Value(M_E));
put("LN2", Value(M_LN2));
put("LN10", Value(M_LN10));
put("LOG2E", Value(log2(M_E)));
put("LOG10E", Value(log10(M_E)));
put("PI", Value(M_PI));
put("SQRT1_2", Value(::sqrt(1 / 2)));
put("SQRT2", Value(::sqrt(2)));
}
MathObject::~MathObject()
{
}
Value MathObject::abs(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_nan();
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
}
Value MathObject::random(Interpreter&)
{
#ifdef __serenity__
double r = (double)arc4random() / (double)UINT32_MAX;
#else
double r = (double)rand() / (double)RAND_MAX;
#endif
return Value(r);
}
Value MathObject::sqrt(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_nan();
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::sqrt(number.as_double()));
}
Value MathObject::floor(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_nan();
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::floor(number.as_double()));
}
Value MathObject::ceil(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_nan();
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::ceil(number.as_double()));
}
Value MathObject::round(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_nan();
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
// FIXME: Use ::round() instead of ::roundf().
return Value(::roundf(number.as_double()));
}
Value MathObject::max(Interpreter& interpreter)
{
if (!interpreter.argument_count()) {
// FIXME: I think this should return *negative* infinity.
return js_infinity();
} else if (interpreter.argument_count() == 1) {
return interpreter.argument(0).to_number();
} else {
Value max = interpreter.argument(0).to_number();
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
Value cur = interpreter.argument(i).to_number();
max = Value(cur.as_double() > max.as_double() ? cur : max);
}
return max;
}
}
Value MathObject::trunc(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_nan();
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
return MathObject::ceil(interpreter);
return MathObject::floor(interpreter);
}
}