ladybird/Libraries/LibGC/Ptr.h
Andreas Kling 59a28febc9
Some checks are pending
CI / macOS, arm64, Sanitizer, Clang (push) Waiting to run
CI / Linux, x86_64, Fuzzers, Clang (push) Waiting to run
CI / Linux, x86_64, Sanitizer, GNU (push) Waiting to run
CI / Linux, x86_64, Sanitizer, Clang (push) Waiting to run
Package the js repl as a binary artifact / Linux, arm64 (push) Waiting to run
Package the js repl as a binary artifact / macOS, arm64 (push) Waiting to run
Package the js repl as a binary artifact / Linux, x86_64 (push) Waiting to run
Run test262 and test-wasm / run_and_update_results (push) Waiting to run
Lint Code / lint (push) Waiting to run
Label PRs with merge conflicts / auto-labeler (push) Waiting to run
Push notes / build (push) Waiting to run
AK: Store hash with HashTable entry to avoid expensive equality checks
When T in HashTable<T> has a potentially slow equality check, it can be
very profitable to check for a matching hash before full equality.

This patch adds may_have_slow_equality_check() to AK::Traits and
defaults it to true. For trivial types (pointers, integers, etc) we
default it to false. This means we skip the hash check when the equality
check would be a single-CPU-word compare anyway.

This synergizes really well with things like HashMap<String, V> where
collisions previously meant we may have to churn through multiple O(n)
equality checks.
2025-09-18 22:37:18 +02:00

274 lines
5.1 KiB
C++

/*
* Copyright (c) 2022, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Format.h>
#include <AK/Traits.h>
#include <AK/Types.h>
namespace GC {
template<typename T>
class Ptr;
template<typename T>
class Ref {
public:
Ref() = delete;
Ref(T& ptr)
: m_ptr(&ptr)
{
}
template<typename U>
Ref(U& ptr)
requires(IsConvertible<U*, T*>)
: m_ptr(&static_cast<T&>(ptr))
{
}
template<typename U>
Ref(Ref<U> const& other)
requires(IsConvertible<U*, T*>)
: m_ptr(other.ptr())
{
}
template<typename U>
Ref& operator=(Ref<U> const& other)
requires(IsConvertible<U*, T*>)
{
m_ptr = static_cast<T*>(other.ptr());
return *this;
}
Ref& operator=(T& other)
{
m_ptr = &other;
return *this;
}
template<typename U>
Ref& operator=(U& other)
requires(IsConvertible<U*, T*>)
{
m_ptr = &static_cast<T&>(other);
return *this;
}
RETURNS_NONNULL T* operator->() const { return m_ptr; }
[[nodiscard]] T& operator*() const { return *m_ptr; }
RETURNS_NONNULL T* ptr() const { return m_ptr; }
RETURNS_NONNULL operator T*() const { return m_ptr; }
operator T&() const { return *m_ptr; }
private:
T* m_ptr { nullptr };
};
template<typename T>
class Ptr {
public:
constexpr Ptr() = default;
Ptr(T& ptr)
: m_ptr(&ptr)
{
}
Ptr(T* ptr)
: m_ptr(ptr)
{
}
template<typename U>
Ptr(Ptr<U> const& other)
requires(IsConvertible<U*, T*>)
: m_ptr(other.ptr())
{
}
Ptr(Ref<T> const& other)
: m_ptr(other.ptr())
{
}
template<typename U>
Ptr(Ref<U> const& other)
requires(IsConvertible<U*, T*>)
: m_ptr(other.ptr())
{
}
Ptr(nullptr_t)
: m_ptr(nullptr)
{
}
template<typename U>
Ptr& operator=(Ptr<U> const& other)
requires(IsConvertible<U*, T*>)
{
m_ptr = static_cast<T*>(other.ptr());
return *this;
}
Ptr& operator=(Ref<T> const& other)
{
m_ptr = other.ptr();
return *this;
}
template<typename U>
Ptr& operator=(Ref<U> const& other)
requires(IsConvertible<U*, T*>)
{
m_ptr = static_cast<T*>(other.ptr());
return *this;
}
Ptr& operator=(T& other)
{
m_ptr = &other;
return *this;
}
template<typename U>
Ptr& operator=(U& other)
requires(IsConvertible<U*, T*>)
{
m_ptr = &static_cast<T&>(other);
return *this;
}
Ptr& operator=(T* other)
{
m_ptr = other;
return *this;
}
template<typename U>
Ptr& operator=(U* other)
requires(IsConvertible<U*, T*>)
{
m_ptr = static_cast<T*>(other);
return *this;
}
T* operator->() const
{
ASSERT(m_ptr);
return m_ptr;
}
[[nodiscard]] T& operator*() const
{
ASSERT(m_ptr);
return *m_ptr;
}
T* ptr() const { return m_ptr; }
explicit operator bool() const { return !!m_ptr; }
bool operator!() const { return !m_ptr; }
operator T*() const { return m_ptr; }
Ref<T> as_nonnull()
{
VERIFY(m_ptr);
return *m_ptr;
}
private:
T* m_ptr { nullptr };
};
// Non-Owning GC::Ptr
template<typename T>
using RawPtr = Ptr<T>;
// Non-Owning Ref
template<typename T>
using RawRef = Ref<T>;
template<typename T, typename U>
inline bool operator==(Ptr<T> const& a, Ptr<U> const& b)
{
return a.ptr() == b.ptr();
}
template<typename T, typename U>
inline bool operator==(Ptr<T> const& a, Ref<U> const& b)
{
return a.ptr() == b.ptr();
}
template<typename T, typename U>
inline bool operator==(Ref<T> const& a, Ref<U> const& b)
{
return a.ptr() == b.ptr();
}
template<typename T, typename U>
inline bool operator==(Ref<T> const& a, Ptr<U> const& b)
{
return a.ptr() == b.ptr();
}
}
namespace AK {
template<typename T>
struct Traits<GC::Ptr<T>> : public DefaultTraits<GC::Ptr<T>> {
static unsigned hash(GC::Ptr<T> const& value)
{
return Traits<T*>::hash(value.ptr());
}
static constexpr bool may_have_slow_equality_check() { return false; }
};
template<typename T>
struct Traits<GC::Ref<T>> : public DefaultTraits<GC::Ref<T>> {
static unsigned hash(GC::Ref<T> const& value)
{
return Traits<T*>::hash(value.ptr());
}
};
template<typename T>
struct Formatter<GC::Ptr<T>> : Formatter<T const*> {
ErrorOr<void> format(FormatBuilder& builder, GC::Ptr<T> const& value)
{
return Formatter<T const*>::format(builder, value.ptr());
}
};
template<Formattable T>
struct Formatter<GC::Ref<T>> : Formatter<T> {
ErrorOr<void> format(FormatBuilder& builder, GC::Ref<T> const& value)
{
return Formatter<T>::format(builder, *value);
}
};
template<typename T>
requires(!HasFormatter<T>)
struct Formatter<GC::Ref<T>> : Formatter<T const*> {
ErrorOr<void> format(FormatBuilder& builder, GC::Ref<T> const& value)
{
return Formatter<T const*>::format(builder, value.ptr());
}
};
}