mirror of
				https://github.com/LadybirdBrowser/ladybird.git
				synced 2025-10-25 01:19:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			746 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			746 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
 | |
|  * Copyright (c) 2022, David Tuin <davidot@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include "UnsignedBigInteger.h"
 | |
| #include <AK/BuiltinWrappers.h>
 | |
| #include <AK/CharacterTypes.h>
 | |
| #include <AK/FloatingPoint.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/StringHash.h>
 | |
| #include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
 | |
| #include <math.h>
 | |
| 
 | |
| namespace Crypto {
 | |
| 
 | |
| UnsignedBigInteger::UnsignedBigInteger(u8 const* ptr, size_t length)
 | |
| {
 | |
|     m_words.resize_and_keep_capacity((length + sizeof(u32) - 1) / sizeof(u32));
 | |
|     size_t in = length, out = 0;
 | |
|     while (in >= sizeof(u32)) {
 | |
|         in -= sizeof(u32);
 | |
|         u32 word = ((u32)ptr[in] << 24) | ((u32)ptr[in + 1] << 16) | ((u32)ptr[in + 2] << 8) | (u32)ptr[in + 3];
 | |
|         m_words[out++] = word;
 | |
|     }
 | |
|     if (in > 0) {
 | |
|         u32 word = 0;
 | |
|         for (size_t i = 0; i < in; i++) {
 | |
|             word <<= 8;
 | |
|             word |= (u32)ptr[i];
 | |
|         }
 | |
|         m_words[out++] = word;
 | |
|     }
 | |
| }
 | |
| 
 | |
| UnsignedBigInteger::UnsignedBigInteger(double value)
 | |
| {
 | |
|     // Because this is currently only used for LibJS we VERIFY some preconditions
 | |
|     // also these values don't have a clear BigInteger representation.
 | |
|     VERIFY(!isnan(value));
 | |
|     VERIFY(!isinf(value));
 | |
|     VERIFY(trunc(value) == value);
 | |
|     VERIFY(value >= 0.0);
 | |
| 
 | |
|     if (value <= NumericLimits<u32>::max()) {
 | |
|         m_words.append(static_cast<u32>(value));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     FloatExtractor<double> extractor;
 | |
|     extractor.d = value;
 | |
|     VERIFY(!extractor.sign);
 | |
| 
 | |
|     i32 real_exponent = extractor.exponent - extractor.exponent_bias;
 | |
|     VERIFY(real_exponent > 0);
 | |
| 
 | |
|     // Ensure we have enough space, we will need 2^exponent bits, so round up in words
 | |
|     auto word_index = (real_exponent + BITS_IN_WORD) / BITS_IN_WORD;
 | |
|     m_words.resize_and_keep_capacity(word_index);
 | |
| 
 | |
|     // Now we just need to put the mantissa with explicit 1 bit at the top at the proper location
 | |
|     u64 raw_mantissa = extractor.mantissa | (1ull << extractor.mantissa_bits);
 | |
|     VERIFY((raw_mantissa & 0xfff0000000000000) == 0x0010000000000000);
 | |
|     // Shift it so the bits we need are at the top
 | |
|     raw_mantissa <<= 64 - extractor.mantissa_bits - 1;
 | |
| 
 | |
|     // The initial bit needs to be exactly aligned with exponent, this is 1-indexed
 | |
|     auto top_word_bit_offset = real_exponent % BITS_IN_WORD + 1;
 | |
| 
 | |
|     auto top_word_bits_from_mantissa = raw_mantissa >> (64 - top_word_bit_offset);
 | |
|     VERIFY(top_word_bits_from_mantissa <= NumericLimits<Word>::max());
 | |
|     m_words[word_index - 1] = top_word_bits_from_mantissa;
 | |
| 
 | |
|     --word_index;
 | |
|     // Shift used bits away
 | |
|     raw_mantissa <<= top_word_bit_offset;
 | |
|     i32 bits_in_mantissa = extractor.mantissa_bits + 1 - top_word_bit_offset;
 | |
|     // Now just put everything at the top of the next words
 | |
| 
 | |
|     constexpr auto to_word_shift = 64 - BITS_IN_WORD;
 | |
| 
 | |
|     while (word_index > 0 && bits_in_mantissa > 0) {
 | |
|         VERIFY((raw_mantissa >> to_word_shift) <= NumericLimits<Word>::max());
 | |
|         m_words[word_index - 1] = raw_mantissa >> to_word_shift;
 | |
|         raw_mantissa <<= to_word_shift;
 | |
| 
 | |
|         bits_in_mantissa -= BITS_IN_WORD;
 | |
|         --word_index;
 | |
|     }
 | |
| 
 | |
|     VERIFY(m_words.size() > word_index);
 | |
|     VERIFY((m_words.size() - word_index) <= 3);
 | |
| 
 | |
|     // No bits left, otherwise we would have to round
 | |
|     VERIFY(raw_mantissa == 0);
 | |
| }
 | |
| 
 | |
| UnsignedBigInteger UnsignedBigInteger::create_invalid()
 | |
| {
 | |
|     UnsignedBigInteger invalid(0);
 | |
|     invalid.invalidate();
 | |
|     return invalid;
 | |
| }
 | |
| 
 | |
| size_t UnsignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
 | |
| {
 | |
|     size_t word_count = trimmed_length();
 | |
|     size_t out = 0;
 | |
|     if (word_count > 0) {
 | |
|         ssize_t leading_zeros = -1;
 | |
|         if (remove_leading_zeros) {
 | |
|             UnsignedBigInteger::Word word = m_words[word_count - 1];
 | |
|             for (size_t i = 0; i < sizeof(u32); i++) {
 | |
|                 u8 byte = (u8)(word >> ((sizeof(u32) - i - 1) * 8));
 | |
|                 data[out++] = byte;
 | |
|                 if (leading_zeros < 0 && byte != 0)
 | |
|                     leading_zeros = (int)i;
 | |
|             }
 | |
|         }
 | |
|         for (size_t i = word_count - (remove_leading_zeros ? 1 : 0); i > 0; i--) {
 | |
|             auto word = m_words[i - 1];
 | |
|             data[out++] = (u8)(word >> 24);
 | |
|             data[out++] = (u8)(word >> 16);
 | |
|             data[out++] = (u8)(word >> 8);
 | |
|             data[out++] = (u8)word;
 | |
|         }
 | |
|         if (leading_zeros > 0)
 | |
|             out -= leading_zeros;
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| UnsignedBigInteger UnsignedBigInteger::from_base(u16 N, StringView str)
 | |
| {
 | |
|     VERIFY(N <= 36);
 | |
|     UnsignedBigInteger result;
 | |
|     UnsignedBigInteger base { N };
 | |
| 
 | |
|     for (auto& c : str) {
 | |
|         if (c == '_')
 | |
|             continue;
 | |
|         result = result.multiplied_by(base).plus(parse_ascii_base36_digit(c));
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ErrorOr<String> UnsignedBigInteger::to_base(u16 N) const
 | |
| {
 | |
|     VERIFY(N <= 36);
 | |
|     if (*this == UnsignedBigInteger { 0 })
 | |
|         return "0"_short_string;
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     UnsignedBigInteger temp(*this);
 | |
|     UnsignedBigInteger quotient;
 | |
|     UnsignedBigInteger remainder;
 | |
| 
 | |
|     while (temp != UnsignedBigInteger { 0 }) {
 | |
|         UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(temp, N, quotient, remainder);
 | |
|         VERIFY(remainder.words()[0] < N);
 | |
|         TRY(builder.try_append(to_ascii_base36_digit(remainder.words()[0])));
 | |
|         temp.set_to(quotient);
 | |
|     }
 | |
| 
 | |
|     return TRY(builder.to_string()).reverse();
 | |
| }
 | |
| 
 | |
| DeprecatedString UnsignedBigInteger::to_base_deprecated(u16 N) const
 | |
| {
 | |
|     return MUST(to_base(N)).to_deprecated_string();
 | |
| }
 | |
| 
 | |
| u64 UnsignedBigInteger::to_u64() const
 | |
| {
 | |
|     static_assert(sizeof(Word) == 4);
 | |
|     if (!length())
 | |
|         return 0;
 | |
|     u64 value = m_words[0];
 | |
|     if (length() > 1)
 | |
|         value |= static_cast<u64>(m_words[1]) << 32;
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| double UnsignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
 | |
| {
 | |
|     VERIFY(!is_invalid());
 | |
|     auto highest_bit = one_based_index_of_highest_set_bit();
 | |
|     if (highest_bit == 0)
 | |
|         return 0;
 | |
|     --highest_bit;
 | |
| 
 | |
|     using Extractor = FloatExtractor<double>;
 | |
| 
 | |
|     // Simple case if less than 2^53 since those number are all exactly representable in doubles
 | |
|     if (highest_bit < Extractor::mantissa_bits + 1)
 | |
|         return static_cast<double>(to_u64());
 | |
| 
 | |
|     // If it uses too many bit to represent in a double return infinity
 | |
|     if (highest_bit > Extractor::exponent_bias)
 | |
|         return __builtin_huge_val();
 | |
| 
 | |
|     // Otherwise we have to take the top 53 bits, use those as the mantissa,
 | |
|     // and the amount of bits as the exponent. Note that the mantissa has an implicit top bit of 1
 | |
|     // so we have to ignore the very top bit.
 | |
| 
 | |
|     // Since we extract at most 53 bits it will take at most 3 words
 | |
|     static_assert(BITS_IN_WORD * 3 >= (Extractor::mantissa_bits + 1));
 | |
|     constexpr auto bits_in_u64 = 64;
 | |
|     static_assert(bits_in_u64 > Extractor::mantissa_bits + 1);
 | |
| 
 | |
|     auto bits_to_read = min(static_cast<size_t>(Extractor::mantissa_bits), highest_bit);
 | |
| 
 | |
|     auto last_word_index = trimmed_length();
 | |
|     VERIFY(last_word_index > 0);
 | |
| 
 | |
|     // Note that highest bit is 0-indexed at this point.
 | |
|     auto highest_bit_index_in_top_word = highest_bit % BITS_IN_WORD;
 | |
| 
 | |
|     // Shift initial word until highest bit is just beyond top of u64.
 | |
|     u64 mantissa = m_words[last_word_index - 1];
 | |
|     if (highest_bit_index_in_top_word != 0)
 | |
|         mantissa <<= (bits_in_u64 - highest_bit_index_in_top_word);
 | |
|     else
 | |
|         mantissa = 0;
 | |
| 
 | |
|     auto bits_written = highest_bit_index_in_top_word;
 | |
| 
 | |
|     --last_word_index;
 | |
| 
 | |
|     Optional<Word> dropped_bits_for_rounding;
 | |
|     u8 bits_dropped_from_final_word = 0;
 | |
| 
 | |
|     if (bits_written < bits_to_read && last_word_index > 0) {
 | |
|         // Second word can always just cleanly be shifted up to the final bit of the first word
 | |
|         // since the first has at most BIT_IN_WORD - 1, 31
 | |
|         u64 next_word = m_words[last_word_index - 1];
 | |
|         VERIFY((mantissa & (next_word << (bits_in_u64 - bits_written - BITS_IN_WORD))) == 0);
 | |
|         mantissa |= next_word << (bits_in_u64 - bits_written - BITS_IN_WORD);
 | |
|         bits_written += BITS_IN_WORD;
 | |
|         --last_word_index;
 | |
| 
 | |
|         if (bits_written > bits_to_read) {
 | |
|             bits_dropped_from_final_word = bits_written - bits_to_read;
 | |
|             dropped_bits_for_rounding = m_words[last_word_index] & ((1 << bits_dropped_from_final_word) - 1);
 | |
|         } else if (bits_written < bits_to_read && last_word_index > 0) {
 | |
|             // The final word has to be shifted down first to discard any excess bits.
 | |
|             u64 final_word = m_words[last_word_index - 1];
 | |
|             --last_word_index;
 | |
| 
 | |
|             auto bits_to_write = bits_to_read - bits_written;
 | |
| 
 | |
|             bits_dropped_from_final_word = BITS_IN_WORD - bits_to_write;
 | |
|             dropped_bits_for_rounding = final_word & ((1 << bits_dropped_from_final_word) - 1u);
 | |
|             final_word >>= bits_dropped_from_final_word;
 | |
| 
 | |
|             // Then move the bits right up to the lowest bits of the second word
 | |
|             VERIFY((mantissa & (final_word << (bits_in_u64 - bits_written - bits_to_write))) == 0);
 | |
|             mantissa |= final_word << (bits_in_u64 - bits_written - bits_to_write);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Now the mantissa should be complete so shift it down
 | |
|     mantissa >>= bits_in_u64 - Extractor::mantissa_bits;
 | |
| 
 | |
|     if (rounding_mode == RoundingMode::IEEERoundAndTiesToEvenMantissa) {
 | |
|         bool round_up = false;
 | |
| 
 | |
|         if (bits_dropped_from_final_word == 0) {
 | |
|             if (last_word_index > 0) {
 | |
|                 Word next_word = m_words[last_word_index - 1];
 | |
|                 last_word_index--;
 | |
|                 if ((next_word & 0x80000000) != 0) {
 | |
|                     // next top bit set check for any other bits
 | |
|                     if ((next_word ^ 0x80000000) != 0) {
 | |
|                         round_up = true;
 | |
|                     } else {
 | |
|                         while (last_word_index > 0) {
 | |
|                             if (m_words[last_word_index - 1] != 0) {
 | |
|                                 round_up = true;
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         // All other bits are 0 which is a tie thus round to even exponent
 | |
|                         // Since we are halfway, if exponent ends with 1 we round up, if 0 we round down
 | |
|                         round_up = (mantissa & 1) != 0;
 | |
|                     }
 | |
|                 } else {
 | |
|                     round_up = false;
 | |
|                 }
 | |
|             } else {
 | |
|                 // If there are no words left the rest is implicitly 0 so just round down
 | |
|                 round_up = false;
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             VERIFY(dropped_bits_for_rounding.has_value());
 | |
|             VERIFY(bits_dropped_from_final_word >= 1);
 | |
| 
 | |
|             // In this case the top bit comes form the dropped bits
 | |
|             auto top_bit_extractor = 1u << (bits_dropped_from_final_word - 1u);
 | |
|             if ((*dropped_bits_for_rounding & top_bit_extractor) != 0) {
 | |
|                 // Possible tie again, if any other bit is set we round up
 | |
|                 if ((*dropped_bits_for_rounding ^ top_bit_extractor) != 0) {
 | |
|                     round_up = true;
 | |
|                 } else {
 | |
|                     while (last_word_index > 0) {
 | |
|                         if (m_words[last_word_index - 1] != 0) {
 | |
|                             round_up = true;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     round_up = (mantissa & 1) != 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 round_up = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (round_up) {
 | |
|             ++mantissa;
 | |
|             if ((mantissa & (1ull << Extractor::mantissa_bits)) != 0) {
 | |
|                 // we overflowed the mantissa
 | |
|                 mantissa = 0;
 | |
|                 highest_bit++;
 | |
| 
 | |
|                 // In which case it is possible we have to round to infinity
 | |
|                 if (highest_bit > Extractor::exponent_bias)
 | |
|                     return __builtin_huge_val();
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         VERIFY(rounding_mode == RoundingMode::RoundTowardZero);
 | |
|     }
 | |
| 
 | |
|     Extractor extractor;
 | |
|     extractor.exponent = highest_bit + extractor.exponent_bias;
 | |
| 
 | |
|     VERIFY((mantissa & 0xfff0000000000000) == 0);
 | |
|     extractor.mantissa = mantissa;
 | |
| 
 | |
|     return extractor.d;
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_to_0()
 | |
| {
 | |
|     m_words.clear_with_capacity();
 | |
|     m_is_invalid = false;
 | |
|     m_cached_trimmed_length = {};
 | |
|     m_cached_hash = 0;
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_to(UnsignedBigInteger::Word other)
 | |
| {
 | |
|     m_is_invalid = false;
 | |
|     m_words.resize_and_keep_capacity(1);
 | |
|     m_words[0] = other;
 | |
|     m_cached_trimmed_length = {};
 | |
|     m_cached_hash = 0;
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_to(UnsignedBigInteger const& other)
 | |
| {
 | |
|     m_is_invalid = other.m_is_invalid;
 | |
|     m_words.resize_and_keep_capacity(other.m_words.size());
 | |
|     __builtin_memcpy(m_words.data(), other.m_words.data(), other.m_words.size() * sizeof(u32));
 | |
|     m_cached_trimmed_length = {};
 | |
|     m_cached_hash = 0;
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::is_zero() const
 | |
| {
 | |
|     for (size_t i = 0; i < length(); ++i) {
 | |
|         if (m_words[i] != 0)
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| size_t UnsignedBigInteger::trimmed_length() const
 | |
| {
 | |
|     if (!m_cached_trimmed_length.has_value()) {
 | |
|         size_t num_leading_zeroes = 0;
 | |
|         for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) {
 | |
|             if (m_words[i] != 0)
 | |
|                 break;
 | |
|         }
 | |
|         m_cached_trimmed_length = length() - num_leading_zeroes;
 | |
|     }
 | |
|     return m_cached_trimmed_length.value();
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::clamp_to_trimmed_length()
 | |
| {
 | |
|     auto length = trimmed_length();
 | |
|     if (m_words.size() > length)
 | |
|         m_words.resize(length);
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::resize_with_leading_zeros(size_t new_length)
 | |
| {
 | |
|     size_t old_length = length();
 | |
|     if (old_length < new_length) {
 | |
|         m_words.resize_and_keep_capacity(new_length);
 | |
|         __builtin_memset(&m_words.data()[old_length], 0, (new_length - old_length) * sizeof(u32));
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t UnsignedBigInteger::one_based_index_of_highest_set_bit() const
 | |
| {
 | |
|     size_t number_of_words = trimmed_length();
 | |
|     size_t index = 0;
 | |
|     if (number_of_words > 0) {
 | |
|         index += (number_of_words - 1) * BITS_IN_WORD;
 | |
|         index += BITS_IN_WORD - count_leading_zeroes(m_words[number_of_words - 1]);
 | |
|     }
 | |
|     return index;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::add_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::subtract_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_or(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::bitwise_or_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_and(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::bitwise_and_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_xor(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::bitwise_xor_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_not_fill_to_one_based_index(size_t size) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::bitwise_not_fill_to_one_based_index_without_allocation(*this, size, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
 | |
| {
 | |
|     UnsignedBigInteger output;
 | |
|     UnsignedBigInteger temp_result;
 | |
|     UnsignedBigInteger temp_plus;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output);
 | |
| 
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
|     UnsignedBigInteger temp_shift_result;
 | |
|     UnsignedBigInteger temp_shift_plus;
 | |
|     UnsignedBigInteger temp_shift;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
 | |
| {
 | |
|     UnsignedBigInteger quotient;
 | |
|     UnsignedBigInteger remainder;
 | |
| 
 | |
|     // If we actually have a u16-compatible divisor, short-circuit to the
 | |
|     // less computationally-intensive "divide_u16_without_allocation" method.
 | |
|     if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) {
 | |
|         UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder);
 | |
|         return UnsignedDivisionResult { quotient, remainder };
 | |
|     }
 | |
| 
 | |
|     UnsignedBigInteger temp_shift_result;
 | |
|     UnsignedBigInteger temp_shift_plus;
 | |
|     UnsignedBigInteger temp_shift;
 | |
|     UnsignedBigInteger temp_minus;
 | |
| 
 | |
|     UnsignedBigIntegerAlgorithms::divide_without_allocation(*this, divisor, temp_shift_result, temp_shift_plus, temp_shift, temp_minus, quotient, remainder);
 | |
| 
 | |
|     return UnsignedDivisionResult { quotient, remainder };
 | |
| }
 | |
| 
 | |
| u32 UnsignedBigInteger::hash() const
 | |
| {
 | |
|     if (m_cached_hash != 0)
 | |
|         return m_cached_hash;
 | |
| 
 | |
|     return m_cached_hash = string_hash((char const*)m_words.data(), sizeof(Word) * m_words.size());
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_bit_inplace(size_t bit_index)
 | |
| {
 | |
|     const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD;
 | |
|     const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD;
 | |
| 
 | |
|     m_words.ensure_capacity(word_index + 1);
 | |
| 
 | |
|     for (size_t i = length(); i <= word_index; ++i) {
 | |
|         m_words.unchecked_append(0);
 | |
|     }
 | |
|     m_words[word_index] |= (1 << inner_word_index);
 | |
| 
 | |
|     m_cached_trimmed_length = {};
 | |
|     m_cached_hash = 0;
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator==(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     if (is_invalid() != other.is_invalid())
 | |
|         return false;
 | |
| 
 | |
|     auto length = trimmed_length();
 | |
| 
 | |
|     if (length != other.trimmed_length())
 | |
|         return false;
 | |
| 
 | |
|     return !__builtin_memcmp(m_words.data(), other.words().data(), length * (BITS_IN_WORD / 8));
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator!=(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     return !(*this == other);
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator<(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     auto length = trimmed_length();
 | |
|     auto other_length = other.trimmed_length();
 | |
| 
 | |
|     if (length < other_length) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (length > other_length) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (length == 0) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = length - 1; i >= 0; --i) {
 | |
|         if (m_words[i] == other.m_words[i])
 | |
|             continue;
 | |
|         return m_words[i] < other.m_words[i];
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator>(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     return *this != other && !(*this < other);
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator>=(UnsignedBigInteger const& other) const
 | |
| {
 | |
|     return *this > other || *this == other;
 | |
| }
 | |
| 
 | |
| UnsignedBigInteger::CompareResult UnsignedBigInteger::compare_to_double(double value) const
 | |
| {
 | |
|     VERIFY(!isnan(value));
 | |
| 
 | |
|     if (isinf(value)) {
 | |
|         bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
 | |
|         return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
 | |
|     }
 | |
| 
 | |
|     bool value_is_negative = value < 0;
 | |
| 
 | |
|     if (value_is_negative)
 | |
|         return CompareResult::DoubleLessThanBigInt;
 | |
| 
 | |
|     // Value is zero.
 | |
|     if (value == 0.0) {
 | |
|         VERIFY(!value_is_negative);
 | |
|         // Either we are also zero or value is certainly less than us.
 | |
|         return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
 | |
|     }
 | |
| 
 | |
|     // If value is not zero but we are, value must be greater.
 | |
|     if (is_zero())
 | |
|         return CompareResult::DoubleGreaterThanBigInt;
 | |
| 
 | |
|     FloatExtractor<double> extractor;
 | |
|     extractor.d = value;
 | |
| 
 | |
|     // Value cannot be negative at this point.
 | |
|     VERIFY(extractor.sign == 0);
 | |
|     // Exponent cannot be all set, as then we must be NaN or infinity.
 | |
|     VERIFY(extractor.exponent != (1 << extractor.exponent_bits) - 1);
 | |
| 
 | |
|     i32 real_exponent = extractor.exponent - extractor.exponent_bias;
 | |
|     if (real_exponent < 0) {
 | |
|         // value is less than 1, and we cannot be zero so value must be less.
 | |
|         return CompareResult::DoubleLessThanBigInt;
 | |
|     }
 | |
| 
 | |
|     u64 bigint_bits_needed = one_based_index_of_highest_set_bit();
 | |
|     VERIFY(bigint_bits_needed > 0);
 | |
| 
 | |
|     // Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
 | |
|     // `exponent - bias + 1` bit to represent doubles value,
 | |
|     // for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
 | |
|     // `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
 | |
|     u32 double_bits_needed = real_exponent + 1;
 | |
| 
 | |
|     // If we need more bits to represent us, we must be of greater value.
 | |
|     if (bigint_bits_needed > double_bits_needed)
 | |
|         return CompareResult::DoubleLessThanBigInt;
 | |
|     // If we need less bits to represent us, we must be of less value.
 | |
|     if (bigint_bits_needed < double_bits_needed)
 | |
|         return CompareResult::DoubleGreaterThanBigInt;
 | |
| 
 | |
|     u64 mantissa_bits = extractor.mantissa;
 | |
| 
 | |
|     // We add the bit which represents the 1. of the double value calculation.
 | |
|     constexpr u64 mantissa_extended_bit = 1ull << extractor.mantissa_bits;
 | |
| 
 | |
|     mantissa_bits |= mantissa_extended_bit;
 | |
| 
 | |
|     // Now we shift value to the left virtually, with `exponent - bias` steps
 | |
|     // we then pretend both it and the big int are extended with virtual zeros.
 | |
|     auto next_bigint_word = (BITS_IN_WORD - 1 + bigint_bits_needed) / BITS_IN_WORD;
 | |
| 
 | |
|     VERIFY(next_bigint_word == trimmed_length());
 | |
| 
 | |
|     auto msb_in_top_word_index = (bigint_bits_needed - 1) % BITS_IN_WORD;
 | |
|     VERIFY(msb_in_top_word_index == (BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
 | |
| 
 | |
|     // We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
 | |
|     mantissa_bits <<= 64 - (extractor.mantissa_bits + 1);
 | |
| 
 | |
|     auto bits_left_in_mantissa = static_cast<size_t>(extractor.mantissa_bits) + 1;
 | |
| 
 | |
|     auto get_next_value_bits = [&](size_t num_bits) -> Word {
 | |
|         VERIFY(num_bits < 63);
 | |
|         VERIFY(bits_left_in_mantissa > 0);
 | |
|         if (num_bits > bits_left_in_mantissa)
 | |
|             num_bits = bits_left_in_mantissa;
 | |
| 
 | |
|         bits_left_in_mantissa -= num_bits;
 | |
| 
 | |
|         u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
 | |
|         // Now shift the bits down to put the most significant bit on the num_bits position
 | |
|         // this means the rest will be "virtual" zeros.
 | |
|         extracted_bits >>= 32;
 | |
| 
 | |
|         // Now shift away the used bits and fit the result into a Word.
 | |
|         mantissa_bits <<= num_bits;
 | |
| 
 | |
|         VERIFY(extracted_bits <= NumericLimits<Word>::max());
 | |
|         return static_cast<Word>(extracted_bits);
 | |
|     };
 | |
| 
 | |
|     auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
 | |
| 
 | |
|     while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
 | |
|         Word bigint_word = words()[next_bigint_word - 1];
 | |
|         Word double_word = get_next_value_bits(bits_in_next_bigint_word);
 | |
| 
 | |
|         // For the first bit we have to align it with the top bit of bigint
 | |
|         // and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
 | |
|         double_word >>= 32 - bits_in_next_bigint_word;
 | |
| 
 | |
|         if (bigint_word < double_word)
 | |
|             return CompareResult::DoubleGreaterThanBigInt;
 | |
| 
 | |
|         if (bigint_word > double_word)
 | |
|             return CompareResult::DoubleLessThanBigInt;
 | |
| 
 | |
|         --next_bigint_word;
 | |
|         bits_in_next_bigint_word = BITS_IN_WORD;
 | |
|     }
 | |
| 
 | |
|     // If there are still bits left in bigint than any non zero bit means it has greater value.
 | |
|     if (next_bigint_word > 0) {
 | |
|         VERIFY(bits_left_in_mantissa == 0);
 | |
|         while (next_bigint_word > 0) {
 | |
|             if (words()[next_bigint_word - 1] != 0)
 | |
|                 return CompareResult::DoubleLessThanBigInt;
 | |
|             --next_bigint_word;
 | |
|         }
 | |
|     } else if (bits_left_in_mantissa > 0) {
 | |
|         VERIFY(next_bigint_word == 0);
 | |
|         // Similarly if there are still any bits set in the mantissa it has greater value.
 | |
|         if (mantissa_bits != 0)
 | |
|             return CompareResult::DoubleGreaterThanBigInt;
 | |
|     }
 | |
| 
 | |
|     // Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
 | |
|     return CompareResult::DoubleEqualsBigInt;
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| ErrorOr<void> AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::UnsignedBigInteger const& value)
 | |
| {
 | |
|     if (value.is_invalid())
 | |
|         return fmtbuilder.put_string("invalid"sv);
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     for (int i = value.length() - 1; i >= 0; --i)
 | |
|         TRY(builder.try_appendff("{}|", value.words()[i]));
 | |
| 
 | |
|     return Formatter<StringView>::format(fmtbuilder, builder.string_view());
 | |
| }
 |