ladybird/Kernel/VM/MemoryManager.cpp
Andreas Kling 3dcec260ed Kernel: Validate the full range of user memory passed to syscalls
We now validate the full range of userspace memory passed into syscalls
instead of just checking that the first and last byte of the memory are
in process-owned regions.

This fixes an issue where it was possible to avoid rejection of invalid
addresses that sat between two valid ones, simply by passing a valid
address and a size large enough to put the end of the range at another
valid address.

I added a little test utility that tries to provoke EFAULT in various
ways to help verify this. I'm sure we can think of more ways to test
this but it's at least a start. :^)

Thanks to mozjag for pointing out that this code was still lacking!

Incidentally this also makes backtraces work again.

Fixes #989.
2020-01-02 02:17:12 +01:00

704 lines
23 KiB
C++

#include "CMOS.h"
#include "Process.h"
#include "StdLib.h"
#include <AK/Assertions.h>
#include <AK/kstdio.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Multiboot.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/InodeVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PurgeableVMObject.h>
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
static MemoryManager* s_the;
MemoryManager& MM
{
return *s_the;
}
MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
{
m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
for (size_t i = 0; i < 4; ++i) {
m_low_page_tables[i] = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * (5 + i));
memset(m_low_page_tables[i], 0, PAGE_SIZE);
}
initialize_paging();
kprintf("MM initialized.\n");
}
MemoryManager::~MemoryManager()
{
}
void MemoryManager::initialize_paging()
{
if (!g_cpu_supports_pae) {
kprintf("x86: Cannot boot on machines without PAE support.\n");
hang();
}
#ifdef MM_DEBUG
dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
#endif
#ifdef MM_DEBUG
dbgprintf("MM: Protect against null dereferences\n");
#endif
// Make null dereferences crash.
map_protected(VirtualAddress(0), PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Identity map bottom 8MB\n");
#endif
// The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
// Every process shares these mappings.
create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
// Disable execution from 0MB through 1MB (BIOS data, legacy things, ...)
for (size_t i = 0; i < (1 * MB); ++i) {
auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
if (g_cpu_supports_nx)
pte.set_execute_disabled(true);
}
// Disable execution from 2MB through 8MB (kmalloc, kmalloc_eternal, slabs, page tables, ...)
for (size_t i = 1; i < 4; ++i) {
auto& pte = kernel_page_directory().table().directory(0)[i];
if (g_cpu_supports_nx)
pte.set_execute_disabled(true);
}
// FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
// Basic physical memory map:
// 0 -> 1 MB We're just leaving this alone for now.
// 1 -> 3 MB Kernel image.
// (last page before 2MB) Used by quickmap_page().
// 2 MB -> 4 MB kmalloc_eternal() space.
// 4 MB -> 7 MB kmalloc() space.
// 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
// 8 MB -> MAX Userspace physical pages (available for allocation!)
// Basic virtual memory map:
// 0 -> 4 KB Null page (so nullptr dereferences crash!)
// 4 KB -> 8 MB Identity mapped.
// 8 MB -> 3 GB Available to userspace.
// 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
#ifdef MM_DEBUG
dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
#endif
m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
RefPtr<PhysicalRegion> region;
bool region_is_super = false;
for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
(u32)(mmap->addr >> 32),
(u32)(mmap->addr & 0xffffffff),
(u32)(mmap->len >> 32),
(u32)(mmap->len & 0xffffffff),
(u32)mmap->type);
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
continue;
// FIXME: Maybe make use of stuff below the 1MB mark?
if (mmap->addr < (1 * MB))
continue;
if ((mmap->addr + mmap->len) > 0xffffffff)
continue;
auto diff = (u32)mmap->addr % PAGE_SIZE;
if (diff != 0) {
kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
diff = PAGE_SIZE - diff;
mmap->addr += diff;
mmap->len -= diff;
}
if ((mmap->len % PAGE_SIZE) != 0) {
kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
mmap->len -= mmap->len % PAGE_SIZE;
}
if (mmap->len < PAGE_SIZE) {
kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
continue;
}
#ifdef MM_DEBUG
kprintf("MM: considering memory at %p - %p\n",
(u32)mmap->addr, (u32)(mmap->addr + mmap->len));
#endif
for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
auto addr = PhysicalAddress(page_base);
if (page_base < 7 * MB) {
// nothing
} else if (page_base >= 7 * MB && page_base < 8 * MB) {
if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_super_physical_regions.last();
region_is_super = true;
} else {
region->expand(region->lower(), addr);
}
} else {
if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_user_physical_regions.last();
region_is_super = false;
} else {
region->expand(region->lower(), addr);
}
}
}
}
for (auto& region : m_super_physical_regions)
m_super_physical_pages += region.finalize_capacity();
for (auto& region : m_user_physical_regions)
m_user_physical_pages += region.finalize_capacity();
#ifdef MM_DEBUG
dbgprintf("MM: Installing page directory\n");
#endif
// Turn on CR4.PAE
asm volatile(
"mov %cr4, %eax\n"
"orl $0x20, %eax\n"
"mov %eax, %cr4\n");
if (g_cpu_supports_pge) {
// Turn on CR4.PGE so the CPU will respect the G bit in page tables.
asm volatile(
"mov %cr4, %eax\n"
"orl $0x80, %eax\n"
"mov %eax, %cr4\n");
kprintf("x86: PGE support enabled\n");
} else {
kprintf("x86: PGE support not detected\n");
}
if (g_cpu_supports_smep) {
// Turn on CR4.SMEP
asm volatile(
"mov %cr4, %eax\n"
"orl $0x100000, %eax\n"
"mov %eax, %cr4\n");
kprintf("x86: SMEP support enabled\n");
} else {
kprintf("x86: SMEP support not detected\n");
}
if (g_cpu_supports_nx) {
// Turn on IA32_EFER.NXE
asm volatile(
"movl $0xc0000080, %ecx\n"
"rdmsr\n"
"orl $0x800, %eax\n"
"wrmsr\n");
kprintf("x86: NX support enabled\n");
} else {
kprintf("x86: NX support not detected\n");
}
asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
asm volatile(
"movl %%cr0, %%eax\n"
"orl $0x80010001, %%eax\n"
"movl %%eax, %%cr0\n" ::
: "%eax", "memory");
#ifdef MM_DEBUG
dbgprintf("MM: Paging initialized.\n");
#endif
}
PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
PageDirectoryEntry& pde = page_directory.table().directory(page_directory_table_index)[page_directory_index];
if (!pde.is_present()) {
#ifdef MM_DEBUG
dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
#endif
if (page_directory_table_index == 0 && page_directory_index < 4) {
ASSERT(&page_directory == m_kernel_page_directory);
pde.set_page_table_base((u32)m_low_page_tables[page_directory_index]);
pde.set_user_allowed(false);
pde.set_present(true);
pde.set_writable(true);
pde.set_global(true);
} else {
auto page_table = allocate_supervisor_physical_page();
#ifdef MM_DEBUG
dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
&page_directory,
&page_directory == m_kernel_page_directory ? "Kernel" : "User",
page_directory.cr3(),
page_directory_index,
vaddr.get(),
page_table->paddr().get());
#endif
pde.set_page_table_base(page_table->paddr().get());
pde.set_user_allowed(true);
pde.set_present(true);
pde.set_writable(true);
pde.set_global(&page_directory == m_kernel_page_directory.ptr());
page_directory.m_physical_pages.set(page_directory_index, move(page_table));
}
}
return pde.page_table_base()[page_table_index];
}
void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
{
InterruptDisabler disabler;
ASSERT(vaddr.is_page_aligned());
for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
auto pte_address = vaddr.offset(offset);
auto& pte = ensure_pte(kernel_page_directory(), pte_address);
pte.set_physical_page_base(pte_address.get());
pte.set_user_allowed(false);
pte.set_present(false);
pte.set_writable(false);
flush_tlb(pte_address);
}
}
void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
{
InterruptDisabler disabler;
ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = vaddr.offset(offset);
auto& pte = ensure_pte(page_directory, pte_address);
pte.set_physical_page_base(pte_address.get());
pte.set_user_allowed(false);
pte.set_present(true);
pte.set_writable(true);
page_directory.flush(pte_address);
}
}
void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
{
s_the = new MemoryManager(physical_address_for_kernel_page_tables);
}
Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
{
if (vaddr.get() < 0xc0000000)
return nullptr;
for (auto& region : MM.m_kernel_regions) {
if (region.contains(vaddr))
return &region;
}
return nullptr;
}
Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
{
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region.contains(vaddr))
return &region;
}
dbg() << process << " Couldn't find user region for " << vaddr;
return nullptr;
}
Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
{
if (auto* region = kernel_region_from_vaddr(vaddr))
return region;
return user_region_from_vaddr(process, vaddr);
}
const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
{
if (auto* region = kernel_region_from_vaddr(vaddr))
return region;
return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
}
Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
{
if (auto* region = kernel_region_from_vaddr(vaddr))
return region;
auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
if (!page_directory)
return nullptr;
ASSERT(page_directory->process());
return user_region_from_vaddr(*page_directory->process(), vaddr);
}
PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(current);
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
#endif
ASSERT(fault.vaddr() != m_quickmap_addr);
auto* region = region_from_vaddr(fault.vaddr());
if (!region) {
kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
return PageFaultResponse::ShouldCrash;
}
return region->handle_fault(fault);
}
OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit)
{
InterruptDisabler disabler;
ASSERT(!(size % PAGE_SIZE));
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
ASSERT(range.is_valid());
OwnPtr<Region> region;
if (user_accessible)
region = Region::create_user_accessible(range, name, access);
else
region = Region::create_kernel_only(range, name, access);
region->map(kernel_page_directory());
// FIXME: It would be cool if these could zero-fill on demand instead.
if (should_commit)
region->commit();
return region;
}
OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access)
{
return allocate_kernel_region(size, name, access, true);
}
OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access)
{
InterruptDisabler disabler;
ASSERT(!(size % PAGE_SIZE));
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
ASSERT(range.is_valid());
auto region = make<Region>(range, vmobject, 0, name, access);
region->map(kernel_page_directory());
return region;
}
void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
{
for (auto& region : m_user_physical_regions) {
if (!region.contains(page)) {
kprintf(
"MM: deallocate_user_physical_page: %p not in %p -> %p\n",
page.paddr().get(), region.lower().get(), region.upper().get());
continue;
}
region.return_page(move(page));
--m_user_physical_pages_used;
return;
}
kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
ASSERT_NOT_REACHED();
}
RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
{
RefPtr<PhysicalPage> page;
for (auto& region : m_user_physical_regions) {
page = region.take_free_page(false);
if (!page.is_null())
break;
}
return page;
}
RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
{
InterruptDisabler disabler;
RefPtr<PhysicalPage> page = find_free_user_physical_page();
if (!page) {
if (m_user_physical_regions.is_empty()) {
kprintf("MM: no user physical regions available (?)\n");
}
for_each_vmobject([&](auto& vmobject) {
if (vmobject.is_purgeable()) {
auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
if (purged_page_count) {
kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
page = find_free_user_physical_page();
ASSERT(page);
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
if (!page) {
kprintf("MM: no user physical pages available\n");
ASSERT_NOT_REACHED();
return {};
}
}
#ifdef MM_DEBUG
dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
#endif
if (should_zero_fill == ShouldZeroFill::Yes) {
auto* ptr = (u32*)quickmap_page(*page);
fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
unquickmap_page();
}
++m_user_physical_pages_used;
return page;
}
void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
{
for (auto& region : m_super_physical_regions) {
if (!region.contains(page)) {
kprintf(
"MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
page.paddr().get(), region.lower().get(), region.upper().get());
continue;
}
region.return_page(move(page));
--m_super_physical_pages_used;
return;
}
kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
ASSERT_NOT_REACHED();
}
RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
{
InterruptDisabler disabler;
RefPtr<PhysicalPage> page;
for (auto& region : m_super_physical_regions) {
page = region.take_free_page(true);
if (page.is_null())
continue;
}
if (!page) {
if (m_super_physical_regions.is_empty()) {
kprintf("MM: no super physical regions available (?)\n");
}
kprintf("MM: no super physical pages available\n");
ASSERT_NOT_REACHED();
return {};
}
#ifdef MM_DEBUG
dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
#endif
fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
++m_super_physical_pages_used;
return page;
}
void MemoryManager::enter_process_paging_scope(Process& process)
{
ASSERT(current);
InterruptDisabler disabler;
current->tss().cr3 = process.page_directory().cr3();
asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
: "memory");
}
void MemoryManager::flush_entire_tlb()
{
asm volatile(
"mov %%cr3, %%eax\n"
"mov %%eax, %%cr3\n" ::
: "%eax", "memory");
}
void MemoryManager::flush_tlb(VirtualAddress vaddr)
{
asm volatile("invlpg %0"
:
: "m"(*(char*)vaddr.get())
: "memory");
}
void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
{
auto& pte = ensure_pte(kernel_page_directory(), vaddr);
pte.set_physical_page_base(paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
pte.set_cache_disabled(cache_disabled);
flush_tlb(vaddr);
}
u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!m_quickmap_in_use);
m_quickmap_in_use = true;
auto page_vaddr = m_quickmap_addr;
auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
pte.set_physical_page_base(physical_page.paddr().get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb(page_vaddr);
ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
#ifdef MM_DEBUG
dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
#endif
return page_vaddr.as_ptr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(m_quickmap_in_use);
auto page_vaddr = m_quickmap_addr;
auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
#ifdef MM_DEBUG
auto old_physical_address = pte.physical_page_base();
#endif
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
flush_tlb(page_vaddr);
#ifdef MM_DEBUG
dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
#endif
m_quickmap_in_use = false;
}
static inline bool is_user_address(VirtualAddress vaddr)
{
return vaddr.get() >= (8 * MB) && vaddr.get() < 0xc0000000;
}
template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
{
ASSERT(size);
VirtualAddress vaddr = base_vaddr.page_base();
VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
if (end_vaddr < vaddr) {
dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
return false;
}
const Region* region = nullptr;
while (vaddr <= end_vaddr) {
if (!region || !region->contains(vaddr)) {
if (space == AccessSpace::Kernel)
region = kernel_region_from_vaddr(vaddr);
if (!region || !region->contains(vaddr))
region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
if (!region
|| (space == AccessSpace::User && !region->is_user_accessible())
|| (access_type == AccessType::Read && !region->is_readable())
|| (access_type == AccessType::Write && !region->is_writable())) {
return false;
}
}
vaddr = vaddr.offset(PAGE_SIZE);
}
return true;
}
bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
{
if (!is_user_address(vaddr))
return false;
auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
return region && region->is_user_accessible() && region->is_stack();
}
bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
{
return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
}
bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
{
if (!is_user_address(vaddr))
return false;
return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
}
bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
{
if (!is_user_address(vaddr))
return false;
return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
}
void MemoryManager::register_vmobject(VMObject& vmobject)
{
InterruptDisabler disabler;
m_vmobjects.append(&vmobject);
}
void MemoryManager::unregister_vmobject(VMObject& vmobject)
{
InterruptDisabler disabler;
m_vmobjects.remove(&vmobject);
}
void MemoryManager::register_region(Region& region)
{
InterruptDisabler disabler;
if (region.vaddr().get() >= 0xc0000000)
m_kernel_regions.append(&region);
else
m_user_regions.append(&region);
}
void MemoryManager::unregister_region(Region& region)
{
InterruptDisabler disabler;
if (region.vaddr().get() >= 0xc0000000)
m_kernel_regions.remove(&region);
else
m_user_regions.remove(&region);
}
ProcessPagingScope::ProcessPagingScope(Process& process)
{
ASSERT(current);
MM.enter_process_paging_scope(process);
}
ProcessPagingScope::~ProcessPagingScope()
{
MM.enter_process_paging_scope(current->process());
}