mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-05-16 16:12:53 +00:00
There are now 2 separate classes for almost the same object type: - EnumerableDeviceIdentifier, which is used in the enumeration code for all PCI host controller classes. This is allowed to be moved and copied, as it doesn't support ref-counting. - DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This class uses ref-counting, and is not allowed to be copied. It has a spinlock member in its structure to allow safely executing complicated IO sequences on a PCI device and its space configuration. There's a static method that allows a quick conversion from EnumerableDeviceIdentifier to DeviceIdentifier while creating a NonnullRefPtr out of it. The reason for doing this is for the sake of integrity and reliablity of the system in 2 places: - Ensure that "complicated" tasks that rely on manipulating PCI device registers are done in a safe manner. For example, determining a PCI BAR space size requires multiple read and writes to the same register, and if another CPU tries to do something else with our selected register, then the result will be a catastrophe. - Allow the PCI API to have a united form around a shared object which actually holds much more data than the PCI::Address structure. This is fundamental if we want to do certain types of optimizations, and be able to support more features of the PCI bus in the foreseeable future. This patch already has several implications: - All PCI::Device(s) hold a reference to a DeviceIdentifier structure being given originally from the PCI::Access singleton. This means that all instances of DeviceIdentifier structures are located in one place, and all references are pointing to that location. This ensures that locking the operation spinlock will take effect in all the appropriate places. - We no longer support adding PCI host controllers and then immediately allow for enumerating it with a lambda function. It was found that this method is extremely broken and too much complicated to work reliably with the new paradigm being introduced in this patch. This means that for Volume Management Devices (Intel VMD devices), we simply first enumerate the PCI bus for such devices in the storage code, and if we find a device, we attach it in the PCI::Access method which will scan for devices behind that bridge and will add new DeviceIdentifier(s) objects to its internal Vector. Afterwards, we just continue as usual with scanning for actual storage controllers, so we will find a corresponding NVMe controllers if there were any behind that VMD bridge.
475 lines
17 KiB
C++
475 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/MACAddress.h>
|
|
#include <Kernel/Bus/PCI/API.h>
|
|
#include <Kernel/Bus/PCI/IDs.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Net/Intel/E1000NetworkAdapter.h>
|
|
#include <Kernel/Net/NetworkingManagement.h>
|
|
#include <Kernel/Sections.h>
|
|
|
|
namespace Kernel {
|
|
|
|
#define REG_CTRL 0x0000
|
|
#define REG_STATUS 0x0008
|
|
#define REG_EEPROM 0x0014
|
|
#define REG_CTRL_EXT 0x0018
|
|
#define REG_INTERRUPT_CAUSE_READ 0x00C0
|
|
#define REG_INTERRUPT_RATE 0x00C4
|
|
#define REG_INTERRUPT_MASK_SET 0x00D0
|
|
#define REG_INTERRUPT_MASK_CLEAR 0x00D8
|
|
#define REG_RCTRL 0x0100
|
|
#define REG_RXDESCLO 0x2800
|
|
#define REG_RXDESCHI 0x2804
|
|
#define REG_RXDESCLEN 0x2808
|
|
#define REG_RXDESCHEAD 0x2810
|
|
#define REG_RXDESCTAIL 0x2818
|
|
#define REG_TCTRL 0x0400
|
|
#define REG_TXDESCLO 0x3800
|
|
#define REG_TXDESCHI 0x3804
|
|
#define REG_TXDESCLEN 0x3808
|
|
#define REG_TXDESCHEAD 0x3810
|
|
#define REG_TXDESCTAIL 0x3818
|
|
#define REG_RDTR 0x2820 // RX Delay Timer Register
|
|
#define REG_RXDCTL 0x3828 // RX Descriptor Control
|
|
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
|
|
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
|
|
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
|
|
#define ECTRL_SLU 0x40 // set link up
|
|
#define RCTL_EN (1 << 1) // Receiver Enable
|
|
#define RCTL_SBP (1 << 2) // Store Bad Packets
|
|
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
|
|
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
|
|
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
|
|
#define RCTL_LBM_NONE (0 << 6) // No Loopback
|
|
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
|
|
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
|
|
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
|
|
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
|
|
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
|
|
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
|
|
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
|
|
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
|
|
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
|
|
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
|
|
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
|
|
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
|
|
#define RCTL_DPF (1 << 22) // Discard Pause Frames
|
|
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
|
|
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
|
|
|
|
// Buffer Sizes
|
|
#define RCTL_BSIZE_256 (3 << 16)
|
|
#define RCTL_BSIZE_512 (2 << 16)
|
|
#define RCTL_BSIZE_1024 (1 << 16)
|
|
#define RCTL_BSIZE_2048 (0 << 16)
|
|
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
|
|
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
|
|
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
|
|
|
|
// Transmit Command
|
|
|
|
#define CMD_EOP (1 << 0) // End of Packet
|
|
#define CMD_IFCS (1 << 1) // Insert FCS
|
|
#define CMD_IC (1 << 2) // Insert Checksum
|
|
#define CMD_RS (1 << 3) // Report Status
|
|
#define CMD_RPS (1 << 4) // Report Packet Sent
|
|
#define CMD_VLE (1 << 6) // VLAN Packet Enable
|
|
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
|
|
|
|
// TCTL Register
|
|
|
|
#define TCTL_EN (1 << 1) // Transmit Enable
|
|
#define TCTL_PSP (1 << 3) // Pad Short Packets
|
|
#define TCTL_CT_SHIFT 4 // Collision Threshold
|
|
#define TCTL_COLD_SHIFT 12 // Collision Distance
|
|
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
|
|
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
|
|
|
|
#define TSTA_DD (1 << 0) // Descriptor Done
|
|
#define TSTA_EC (1 << 1) // Excess Collisions
|
|
#define TSTA_LC (1 << 2) // Late Collision
|
|
#define LSTA_TU (1 << 3) // Transmit Underrun
|
|
|
|
// STATUS Register
|
|
|
|
#define STATUS_FD 0x01
|
|
#define STATUS_LU 0x02
|
|
#define STATUS_TXOFF 0x08
|
|
#define STATUS_SPEED 0xC0
|
|
#define STATUS_SPEED_10MB 0x00
|
|
#define STATUS_SPEED_100MB 0x40
|
|
#define STATUS_SPEED_1000MB1 0x80
|
|
#define STATUS_SPEED_1000MB2 0xC0
|
|
|
|
// Interrupt Masks
|
|
|
|
#define INTERRUPT_TXDW (1 << 0)
|
|
#define INTERRUPT_TXQE (1 << 1)
|
|
#define INTERRUPT_LSC (1 << 2)
|
|
#define INTERRUPT_RXSEQ (1 << 3)
|
|
#define INTERRUPT_RXDMT0 (1 << 4)
|
|
#define INTERRUPT_RXO (1 << 6)
|
|
#define INTERRUPT_RXT0 (1 << 7)
|
|
#define INTERRUPT_MDAC (1 << 9)
|
|
#define INTERRUPT_RXCFG (1 << 10)
|
|
#define INTERRUPT_PHYINT (1 << 12)
|
|
#define INTERRUPT_TXD_LOW (1 << 15)
|
|
#define INTERRUPT_SRPD (1 << 16)
|
|
|
|
// https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf Section 5.2
|
|
UNMAP_AFTER_INIT static bool is_valid_device_id(u16 device_id)
|
|
{
|
|
// FIXME: It would be nice to distinguish which particular device it is.
|
|
// Especially since it's needed to determine which registers we can access.
|
|
// The reason I haven't done it now is because there's some IDs with multiple devices
|
|
// and some devices with multiple IDs.
|
|
switch (device_id) {
|
|
case 0x1019: // 82547EI-A0, 82547EI-A1, 82547EI-B0, 82547GI-B0
|
|
case 0x101A: // 82547EI-B0
|
|
case 0x1010: // 82546EB-A1
|
|
case 0x1012: // 82546EB-A1
|
|
case 0x101D: // 82546EB-A1
|
|
case 0x1079: // 82546GB-B0
|
|
case 0x107A: // 82546GB-B0
|
|
case 0x107B: // 82546GB-B0
|
|
case 0x100F: // 82545EM-A
|
|
case 0x1011: // 82545EM-A
|
|
case 0x1026: // 82545GM-B
|
|
case 0x1027: // 82545GM-B
|
|
case 0x1028: // 82545GM-B
|
|
case 0x1107: // 82544EI-A4
|
|
case 0x1112: // 82544GC-A4
|
|
case 0x1013: // 82541EI-A0, 82541EI-B0
|
|
case 0x1018: // 82541EI-B0
|
|
case 0x1076: // 82541GI-B1, 82541PI-C0
|
|
case 0x1077: // 82541GI-B1
|
|
case 0x1078: // 82541ER-C0
|
|
case 0x1017: // 82540EP-A
|
|
case 0x1016: // 82540EP-A
|
|
case 0x100E: // 82540EM-A
|
|
case 0x1015: // 82540EM-A
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<bool> E1000NetworkAdapter::probe(PCI::DeviceIdentifier const& pci_device_identifier)
|
|
{
|
|
if (pci_device_identifier.hardware_id().vendor_id != PCI::VendorID::Intel)
|
|
return false;
|
|
return is_valid_device_id(pci_device_identifier.hardware_id().device_id);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<NonnullLockRefPtr<NetworkAdapter>> E1000NetworkAdapter::create(PCI::DeviceIdentifier const& pci_device_identifier)
|
|
{
|
|
u8 irq = pci_device_identifier.interrupt_line().value();
|
|
auto interface_name = TRY(NetworkingManagement::generate_interface_name_from_pci_address(pci_device_identifier));
|
|
auto registers_io_window = TRY(IOWindow::create_for_pci_device_bar(pci_device_identifier, PCI::HeaderType0BaseRegister::BAR0));
|
|
|
|
auto rx_buffer_region = TRY(MM.allocate_contiguous_kernel_region(rx_buffer_size * number_of_rx_descriptors, "E1000 RX buffers"sv, Memory::Region::Access::ReadWrite));
|
|
auto tx_buffer_region = MM.allocate_contiguous_kernel_region(tx_buffer_size * number_of_tx_descriptors, "E1000 TX buffers"sv, Memory::Region::Access::ReadWrite).release_value();
|
|
auto rx_descriptors_region = TRY(MM.allocate_contiguous_kernel_region(TRY(Memory::page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors)), "E1000 RX Descriptors"sv, Memory::Region::Access::ReadWrite));
|
|
auto tx_descriptors_region = TRY(MM.allocate_contiguous_kernel_region(TRY(Memory::page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors)), "E1000 TX Descriptors"sv, Memory::Region::Access::ReadWrite));
|
|
|
|
return TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) E1000NetworkAdapter(pci_device_identifier,
|
|
irq, move(registers_io_window),
|
|
move(rx_buffer_region),
|
|
move(tx_buffer_region),
|
|
move(rx_descriptors_region),
|
|
move(tx_descriptors_region),
|
|
move(interface_name))));
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<void> E1000NetworkAdapter::initialize(Badge<NetworkingManagement>)
|
|
{
|
|
dmesgln_pci(*this, "Found @ {}", device_identifier().address());
|
|
|
|
enable_bus_mastering(device_identifier());
|
|
|
|
dmesgln_pci(*this, "IO base: {}", m_registers_io_window);
|
|
dmesgln_pci(*this, "Interrupt line: {}", interrupt_number());
|
|
detect_eeprom();
|
|
dmesgln_pci(*this, "Has EEPROM? {}", m_has_eeprom);
|
|
read_mac_address();
|
|
auto const& mac = mac_address();
|
|
dmesgln_pci(*this, "MAC address: {}", mac.to_string());
|
|
|
|
initialize_rx_descriptors();
|
|
initialize_tx_descriptors();
|
|
|
|
setup_link();
|
|
setup_interrupts();
|
|
|
|
m_link_up = ((in32(REG_STATUS) & STATUS_LU) != 0);
|
|
|
|
return {};
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::setup_link()
|
|
{
|
|
u32 flags = in32(REG_CTRL);
|
|
out32(REG_CTRL, flags | ECTRL_SLU);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::setup_interrupts()
|
|
{
|
|
out32(REG_INTERRUPT_RATE, 6000); // Interrupt rate of 1.536 milliseconds
|
|
out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0 | INTERRUPT_RXO);
|
|
in32(REG_INTERRUPT_CAUSE_READ);
|
|
enable_irq();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT E1000NetworkAdapter::E1000NetworkAdapter(PCI::DeviceIdentifier const& device_identifier, u8 irq,
|
|
NonnullOwnPtr<IOWindow> registers_io_window, NonnullOwnPtr<Memory::Region> rx_buffer_region,
|
|
NonnullOwnPtr<Memory::Region> tx_buffer_region, NonnullOwnPtr<Memory::Region> rx_descriptors_region,
|
|
NonnullOwnPtr<Memory::Region> tx_descriptors_region, NonnullOwnPtr<KString> interface_name)
|
|
: NetworkAdapter(move(interface_name))
|
|
, PCI::Device(device_identifier)
|
|
, IRQHandler(irq)
|
|
, m_registers_io_window(move(registers_io_window))
|
|
, m_rx_descriptors_region(move(rx_descriptors_region))
|
|
, m_tx_descriptors_region(move(tx_descriptors_region))
|
|
, m_rx_buffer_region(move(rx_buffer_region))
|
|
, m_tx_buffer_region(move(tx_buffer_region))
|
|
{
|
|
}
|
|
|
|
UNMAP_AFTER_INIT E1000NetworkAdapter::~E1000NetworkAdapter() = default;
|
|
|
|
bool E1000NetworkAdapter::handle_irq(RegisterState const&)
|
|
{
|
|
u32 status = in32(REG_INTERRUPT_CAUSE_READ);
|
|
|
|
m_entropy_source.add_random_event(status);
|
|
|
|
if (status == 0)
|
|
return false;
|
|
|
|
if (status & INTERRUPT_LSC) {
|
|
u32 flags = in32(REG_CTRL);
|
|
out32(REG_CTRL, flags | ECTRL_SLU);
|
|
|
|
m_link_up = ((in32(REG_STATUS) & STATUS_LU) != 0);
|
|
}
|
|
if (status & INTERRUPT_RXDMT0) {
|
|
// Threshold OK?
|
|
}
|
|
if (status & INTERRUPT_RXO) {
|
|
dbgln_if(E1000_DEBUG, "E1000: RX buffer overrun");
|
|
}
|
|
if (status & INTERRUPT_RXT0) {
|
|
receive();
|
|
}
|
|
|
|
m_wait_queue.wake_all();
|
|
|
|
out32(REG_INTERRUPT_CAUSE_READ, 0xffffffff);
|
|
return true;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::detect_eeprom()
|
|
{
|
|
out32(REG_EEPROM, 0x1);
|
|
for (int i = 0; i < 999; ++i) {
|
|
u32 data = in32(REG_EEPROM);
|
|
if (data & 0x10) {
|
|
m_has_eeprom = true;
|
|
return;
|
|
}
|
|
}
|
|
m_has_eeprom = false;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT u32 E1000NetworkAdapter::read_eeprom(u8 address)
|
|
{
|
|
u16 data = 0;
|
|
u32 tmp = 0;
|
|
if (m_has_eeprom) {
|
|
out32(REG_EEPROM, ((u32)address << 8) | 1);
|
|
while (!((tmp = in32(REG_EEPROM)) & (1 << 4)))
|
|
;
|
|
} else {
|
|
out32(REG_EEPROM, ((u32)address << 2) | 1);
|
|
while (!((tmp = in32(REG_EEPROM)) & (1 << 1)))
|
|
;
|
|
}
|
|
data = (tmp >> 16) & 0xffff;
|
|
return data;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::read_mac_address()
|
|
{
|
|
if (m_has_eeprom) {
|
|
MACAddress mac {};
|
|
u32 tmp = read_eeprom(0);
|
|
mac[0] = tmp & 0xff;
|
|
mac[1] = tmp >> 8;
|
|
tmp = read_eeprom(1);
|
|
mac[2] = tmp & 0xff;
|
|
mac[3] = tmp >> 8;
|
|
tmp = read_eeprom(2);
|
|
mac[4] = tmp & 0xff;
|
|
mac[5] = tmp >> 8;
|
|
set_mac_address(mac);
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_rx_descriptors()
|
|
{
|
|
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
|
|
constexpr auto rx_buffer_page_count = rx_buffer_size / PAGE_SIZE;
|
|
for (size_t i = 0; i < number_of_rx_descriptors; ++i) {
|
|
auto& descriptor = rx_descriptors[i];
|
|
m_rx_buffers[i] = m_rx_buffer_region->vaddr().as_ptr() + rx_buffer_size * i;
|
|
descriptor.addr = m_rx_buffer_region->physical_page(rx_buffer_page_count * i)->paddr().get();
|
|
descriptor.status = 0;
|
|
}
|
|
|
|
out32(REG_RXDESCLO, m_rx_descriptors_region->physical_page(0)->paddr().get());
|
|
out32(REG_RXDESCHI, 0);
|
|
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
|
|
out32(REG_RXDESCHEAD, 0);
|
|
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
|
|
|
|
out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_tx_descriptors()
|
|
{
|
|
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
|
|
constexpr auto tx_buffer_page_count = tx_buffer_size / PAGE_SIZE;
|
|
|
|
for (size_t i = 0; i < number_of_tx_descriptors; ++i) {
|
|
auto& descriptor = tx_descriptors[i];
|
|
m_tx_buffers[i] = m_tx_buffer_region->vaddr().as_ptr() + tx_buffer_size * i;
|
|
descriptor.addr = m_tx_buffer_region->physical_page(tx_buffer_page_count * i)->paddr().get();
|
|
descriptor.cmd = 0;
|
|
}
|
|
|
|
out32(REG_TXDESCLO, m_tx_descriptors_region->physical_page(0)->paddr().get());
|
|
out32(REG_TXDESCHI, 0);
|
|
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
|
|
out32(REG_TXDESCHEAD, 0);
|
|
out32(REG_TXDESCTAIL, 0);
|
|
|
|
out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP);
|
|
out32(REG_TIPG, 0x0060200A);
|
|
}
|
|
|
|
void E1000NetworkAdapter::out8(u16 address, u8 data)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: OUT8 {:#02x} @ {:#04x}", data, address);
|
|
m_registers_io_window->write8(address, data);
|
|
}
|
|
|
|
void E1000NetworkAdapter::out16(u16 address, u16 data)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: OUT16 {:#04x} @ {:#04x}", data, address);
|
|
m_registers_io_window->write16(address, data);
|
|
}
|
|
|
|
void E1000NetworkAdapter::out32(u16 address, u32 data)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: OUT32 {:#08x} @ {:#04x}", data, address);
|
|
m_registers_io_window->write32(address, data);
|
|
}
|
|
|
|
u8 E1000NetworkAdapter::in8(u16 address)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: IN8 @ {:#04x}", address);
|
|
return m_registers_io_window->read8(address);
|
|
}
|
|
|
|
u16 E1000NetworkAdapter::in16(u16 address)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: IN16 @ {:#04x}", address);
|
|
return m_registers_io_window->read16(address);
|
|
}
|
|
|
|
u32 E1000NetworkAdapter::in32(u16 address)
|
|
{
|
|
dbgln_if(E1000_DEBUG, "E1000: IN32 @ {:#04x}", address);
|
|
return m_registers_io_window->read32(address);
|
|
}
|
|
|
|
void E1000NetworkAdapter::send_raw(ReadonlyBytes payload)
|
|
{
|
|
disable_irq();
|
|
size_t tx_current = in32(REG_TXDESCTAIL) % number_of_tx_descriptors;
|
|
dbgln_if(E1000_DEBUG, "E1000: Sending packet ({} bytes)", payload.size());
|
|
auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr();
|
|
auto& descriptor = tx_descriptors[tx_current];
|
|
VERIFY(payload.size() <= 8192);
|
|
auto* vptr = (void*)m_tx_buffers[tx_current];
|
|
memcpy(vptr, payload.data(), payload.size());
|
|
descriptor.length = payload.size();
|
|
descriptor.status = 0;
|
|
descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS;
|
|
dbgln_if(E1000_DEBUG, "E1000: Using tx descriptor {} (head is at {})", tx_current, in32(REG_TXDESCHEAD));
|
|
tx_current = (tx_current + 1) % number_of_tx_descriptors;
|
|
Processor::disable_interrupts();
|
|
enable_irq();
|
|
out32(REG_TXDESCTAIL, tx_current);
|
|
for (;;) {
|
|
if (descriptor.status) {
|
|
Processor::enable_interrupts();
|
|
break;
|
|
}
|
|
m_wait_queue.wait_forever("E1000NetworkAdapter"sv);
|
|
}
|
|
dbgln_if(E1000_DEBUG, "E1000: Sent packet, status is now {:#02x}!", (u8)descriptor.status);
|
|
}
|
|
|
|
void E1000NetworkAdapter::receive()
|
|
{
|
|
auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr();
|
|
u32 rx_current;
|
|
for (;;) {
|
|
rx_current = in32(REG_RXDESCTAIL) % number_of_rx_descriptors;
|
|
rx_current = (rx_current + 1) % number_of_rx_descriptors;
|
|
if (!(rx_descriptors[rx_current].status & 1))
|
|
break;
|
|
auto* buffer = m_rx_buffers[rx_current];
|
|
u16 length = rx_descriptors[rx_current].length;
|
|
VERIFY(length <= 8192);
|
|
dbgln_if(E1000_DEBUG, "E1000: Received 1 packet @ {:p} ({} bytes)", buffer, length);
|
|
did_receive({ buffer, length });
|
|
rx_descriptors[rx_current].status = 0;
|
|
out32(REG_RXDESCTAIL, rx_current);
|
|
}
|
|
}
|
|
|
|
i32 E1000NetworkAdapter::link_speed()
|
|
{
|
|
if (!link_up())
|
|
return NetworkAdapter::LINKSPEED_INVALID;
|
|
|
|
u32 speed = in32(REG_STATUS) & STATUS_SPEED;
|
|
switch (speed) {
|
|
case STATUS_SPEED_10MB:
|
|
return 10;
|
|
case STATUS_SPEED_100MB:
|
|
return 100;
|
|
case STATUS_SPEED_1000MB1:
|
|
case STATUS_SPEED_1000MB2:
|
|
return 1000;
|
|
default:
|
|
return NetworkAdapter::LINKSPEED_INVALID;
|
|
}
|
|
}
|
|
|
|
bool E1000NetworkAdapter::link_full_duplex()
|
|
{
|
|
u32 status = in32(REG_STATUS);
|
|
return !!(status & STATUS_FD);
|
|
}
|
|
|
|
}
|