ladybird/Kernel/Time/APICTimer.cpp
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

183 lines
6 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/IO.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#include <Kernel/Time/TimeManagement.h>
namespace Kernel {
#define APIC_TIMER_MEASURE_CPU_CLOCK
UNMAP_AFTER_INIT APICTimer* APICTimer::initialize(u8 interrupt_number, HardwareTimerBase& calibration_source)
{
auto* timer = new APICTimer(interrupt_number, nullptr);
if (!timer->calibrate(calibration_source)) {
delete timer;
return nullptr;
}
return timer;
}
UNMAP_AFTER_INIT APICTimer::APICTimer(u8 interrupt_number, Function<void(const RegisterState&)> callback)
: HardwareTimer<GenericInterruptHandler>(interrupt_number, move(callback))
{
disable_remap();
}
UNMAP_AFTER_INIT bool APICTimer::calibrate(HardwareTimerBase& calibration_source)
{
VERIFY_INTERRUPTS_DISABLED();
klog() << "APICTimer: Using " << calibration_source.model() << " as calibration source";
auto& apic = APIC::the();
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
bool supports_tsc = Processor::current().has_feature(CPUFeature::TSC);
#endif
// temporarily replace the timer callbacks
const size_t ticks_in_100ms = calibration_source.ticks_per_second() / 10;
Atomic<size_t> calibration_ticks = 0;
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
volatile u64 start_tsc = 0, end_tsc = 0;
#endif
volatile u32 start_apic_count = 0, end_apic_count = 0;
auto original_source_callback = calibration_source.set_callback([&](const RegisterState&) {
u32 current_timer_count = apic.get_timer_current_count();
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
u64 current_tsc = supports_tsc ? read_tsc() : 0;
#endif
auto prev_tick = calibration_ticks.fetch_add(1, AK::memory_order_acq_rel);
if (prev_tick == 0) {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
start_tsc = current_tsc;
#endif
start_apic_count = current_timer_count;
} else if (prev_tick + 1 == ticks_in_100ms) {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
end_tsc = current_tsc;
#endif
end_apic_count = current_timer_count;
}
});
// Setup a counter that should be much longer than our calibration time.
// We don't want the APIC timer to actually fire. We do however want the
// calbibration_source timer to fire so that we can read the current
// tick count from the APIC timer
auto original_callback = set_callback([&](const RegisterState&) {
klog() << "APICTimer: Timer fired during calibration!";
VERIFY_NOT_REACHED(); // TODO: How should we handle this?
});
apic.setup_local_timer(0xffffffff, APIC::TimerMode::Periodic, true);
sti();
// Loop for about 100 ms
while (calibration_ticks.load(AK::memory_order_relaxed) < ticks_in_100ms)
;
cli();
// Restore timer callbacks
calibration_source.set_callback(move(original_source_callback));
set_callback(move(original_callback));
disable_local_timer();
auto delta_apic_count = start_apic_count - end_apic_count; // The APIC current count register decrements!
m_timer_period = (delta_apic_count * apic.get_timer_divisor()) / ticks_in_100ms;
auto apic_freq = (delta_apic_count * apic.get_timer_divisor()) / apic.get_timer_divisor();
if (apic_freq < 1000000) {
klog() << "APICTimer: Frequency too slow!";
return false;
}
klog() << "APICTimer: Bus clock speed: " << (apic_freq / 1000000) << "." << (apic_freq % 1000000) << " MHz";
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
if (supports_tsc) {
auto delta_tsc = end_tsc - start_tsc;
klog() << "APICTimer: CPU clock speed: " << (delta_tsc / 1000000) << "." << (delta_tsc % 1000000) << " MHz";
}
#endif
// TODO: measure rather than assuming it matches?
m_frequency = calibration_source.ticks_per_second();
enable_local_timer();
return true;
}
void APICTimer::enable_local_timer()
{
APIC::the().setup_local_timer(m_timer_period, m_timer_mode, true);
}
void APICTimer::disable_local_timer()
{
APIC::the().setup_local_timer(0, APIC::TimerMode::OneShot, false);
}
size_t APICTimer::ticks_per_second() const
{
return m_frequency;
}
void APICTimer::set_periodic()
{
// FIXME: Implement it...
VERIFY_NOT_REACHED();
}
void APICTimer::set_non_periodic()
{
// FIXME: Implement it...
VERIFY_NOT_REACHED();
}
void APICTimer::reset_to_default_ticks_per_second()
{
}
bool APICTimer::try_to_set_frequency([[maybe_unused]] size_t frequency)
{
return true;
}
bool APICTimer::is_capable_of_frequency([[maybe_unused]] size_t frequency) const
{
return false;
}
size_t APICTimer::calculate_nearest_possible_frequency([[maybe_unused]] size_t frequency) const
{
return 0;
}
}