ladybird/Kernel/Storage/Partition/GUIDPartitionTable.cpp
Liav A 5ed3f7c6bf Kernel/Storage: Migrate the partition code to use the ErrorOr container
That code used the old AK::Result container, which leads to overly
complicated initialization flow when trying to figure out the correct
partition table type. Instead, when using the ErrorOr container the code
is much simpler and more understandable.
2022-04-28 22:13:54 +02:00

129 lines
4 KiB
C++

/*
* Copyright (c) 2020-2022, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/AllOf.h>
#include <AK/Array.h>
#include <Kernel/Debug.h>
#include <Kernel/Storage/Partition/GUIDPartitionTable.h>
namespace Kernel {
#define GPT_SIGNATURE2 0x54524150
#define GPT_SIGNATURE 0x20494645
#define BytesPerSector 512
struct [[gnu::packed]] GPTPartitionEntry {
u8 partition_guid[16];
u8 unique_guid[16];
u64 first_lba;
u64 last_lba;
u64 attributes;
char partition_name[72];
};
struct [[gnu::packed]] GUIDPartitionHeader {
u32 sig[2];
u32 revision;
u32 header_size;
u32 crc32_header;
u32 reserved;
u64 current_lba;
u64 backup_lba;
u64 first_usable_lba;
u64 last_usable_lba;
u64 disk_guid1[2];
u64 partition_array_start_lba;
u32 entries_count;
u32 partition_entry_size;
u32 crc32_entries_array;
};
ErrorOr<NonnullOwnPtr<GUIDPartitionTable>> GUIDPartitionTable::try_to_initialize(StorageDevice const& device)
{
auto table = TRY(adopt_nonnull_own_or_enomem(new (nothrow) GUIDPartitionTable(device)));
if (!table->is_valid())
return Error::from_errno(EINVAL);
return table;
}
GUIDPartitionTable::GUIDPartitionTable(StorageDevice const& device)
: MBRPartitionTable(device)
{
// FIXME: Handle OOM failure here.
m_cached_header = ByteBuffer::create_zeroed(m_device->block_size()).release_value_but_fixme_should_propagate_errors();
VERIFY(partitions_count() == 0);
if (!initialize())
m_valid = false;
}
GUIDPartitionHeader const& GUIDPartitionTable::header() const
{
return *(GUIDPartitionHeader const*)m_cached_header.data();
}
bool GUIDPartitionTable::initialize()
{
VERIFY(m_cached_header.data() != nullptr);
auto first_gpt_block = (m_device->block_size() == 512) ? 1 : 0;
auto buffer = UserOrKernelBuffer::for_kernel_buffer(m_cached_header.data());
if (!m_device->read_block(first_gpt_block, buffer)) {
return false;
}
dbgln_if(GPT_DEBUG, "GUIDPartitionTable: signature - {:#08x} {:#08x}", header().sig[1], header().sig[0]);
if (header().sig[0] != GPT_SIGNATURE && header().sig[1] != GPT_SIGNATURE2) {
dbgln("GUIDPartitionTable: bad signature {:#08x} {:#08x}", header().sig[1], header().sig[0]);
return false;
}
auto entries_buffer_result = ByteBuffer::create_zeroed(m_device->block_size());
if (entries_buffer_result.is_error()) {
dbgln("GUIPartitionTable: not enough memory for entries buffer");
return false;
}
auto entries_buffer = entries_buffer_result.release_value();
auto raw_entries_buffer = UserOrKernelBuffer::for_kernel_buffer(entries_buffer.data());
size_t raw_byte_index = header().partition_array_start_lba * m_device->block_size();
for (size_t entry_index = 0; entry_index < header().entries_count; entry_index++) {
if (!m_device->read_block((raw_byte_index / m_device->block_size()), raw_entries_buffer)) {
return false;
}
auto* entries = (GPTPartitionEntry const*)entries_buffer.data();
auto& entry = entries[entry_index % (m_device->block_size() / (size_t)header().partition_entry_size)];
Array<u8, 16> partition_type {};
partition_type.span().overwrite(0, entry.partition_guid, partition_type.size());
if (is_unused_entry(partition_type)) {
raw_byte_index += header().partition_entry_size;
continue;
}
Array<u8, 16> unique_guid {};
unique_guid.span().overwrite(0, entry.unique_guid, unique_guid.size());
dbgln("Detected GPT partition (entry={}), offset={}, limit={}", entry_index, entry.first_lba, entry.last_lba);
m_partitions.append({ entry.first_lba, entry.last_lba, partition_type, unique_guid, entry.attributes });
raw_byte_index += header().partition_entry_size;
}
return true;
}
bool GUIDPartitionTable::is_unused_entry(Array<u8, 16> partition_type) const
{
return all_of(partition_type, [](auto const octet) { return octet == 0; });
}
}