ladybird/Libraries/LibGfx/Path.cpp
AnotherTest 677568e3d4 LibGfx: Handle filling complex shapes better
This allows the painter to render filled complex shapes better, by
constructing a path graph for (interesting) intersecting lines and
omitting lines from the containing segments if they are detected
to take no part in defining the edges of a shape.

This approach would still fail if there are multiple logical shapes
that are confined to the collection of lines.
For instance, two polygons intersecting each other in a way that one
vertex of polygon A ends up inside polygon B.
we would detect that polygon A's edges are part of the shape
(technically correct) even though they are not a part of polygon B at
all.
2020-05-08 12:49:15 +02:00

303 lines
9.7 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/HashFunctions.h>
#include <AK/HashTable.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
#include <math.h>
namespace Gfx {
void Path::close()
{
if (m_segments.size() <= 1)
return;
invalidate_split_lines();
auto& last_point = m_segments.last().point;
for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
auto& segment = m_segments[i];
if (segment.type == Segment::Type::MoveTo) {
if (last_point == segment.point)
return;
m_segments.append({ Segment::Type::LineTo, segment.point });
return;
}
}
}
String Path::to_string() const
{
StringBuilder builder;
builder.append("Path { ");
for (auto& segment : m_segments) {
switch (segment.type) {
case Segment::Type::MoveTo:
builder.append("MoveTo");
break;
case Segment::Type::LineTo:
builder.append("LineTo");
break;
case Segment::Type::QuadraticBezierCurveTo:
builder.append("QuadraticBezierCurveTo");
break;
case Segment::Type::Invalid:
builder.append("Invalid");
break;
}
builder.append('(');
builder.append(segment.point.to_string());
if (segment.through.has_value()) {
builder.append(", ");
builder.append(segment.through.value().to_string());
}
builder.append(')');
builder.append(' ');
}
builder.append("}");
return builder.to_string();
}
void Path::segmentize_path()
{
Vector<LineSegment> segments;
auto add_line = [&](const auto& p0, const auto& p1) {
float ymax = p0.y(), ymin = p1.y(), x_of_ymin = p1.x(), x_of_ymax = p0.x();
auto slope = p0.x() == p1.x() ? 0 : ((float)(p0.y() - p1.y())) / ((float)(p0.x() - p1.x()));
if (p0.y() < p1.y()) {
ymin = ymax;
ymax = p1.y();
x_of_ymax = x_of_ymin;
x_of_ymin = p0.x();
}
segments.append({ Point(p0.x(), p0.y()),
Point(p1.x(), p1.y()),
slope == 0 ? 0 : 1 / slope,
x_of_ymin,
ymax, ymin, x_of_ymax });
};
FloatPoint cursor { 0, 0 };
for (auto& segment : m_segments) {
switch (segment.type) {
case Segment::Type::MoveTo:
cursor = segment.point;
break;
case Segment::Type::LineTo: {
add_line(cursor, segment.point);
cursor = segment.point;
break;
}
case Segment::Type::QuadraticBezierCurveTo: {
auto& control = segment.through.value();
Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment.point, [&](const FloatPoint& p0, const FloatPoint& p1) {
add_line(Point(p0.x(), p0.y()), Point(p1.x(), p1.y()));
});
cursor = segment.point;
break;
}
case Segment::Type::Invalid:
ASSERT_NOT_REACHED();
break;
}
}
// sort segments by ymax
quick_sort(segments, [](const auto& line0, const auto& line1) {
return line1.maximum_y < line0.maximum_y;
});
m_split_lines = move(segments);
}
Vector<Path::LineSegment> Path::split_lines(Path::ShapeKind kind)
{
if (m_split_lines.has_value()) {
const auto& lines = m_split_lines.value();
if (kind == Complex)
return lines;
Vector<LineSegment> segments;
for (auto& line : lines) {
if (is_part_of_closed_polygon(line.from, line.to))
segments.append(line);
}
return move(segments);
}
segmentize_path();
ASSERT(m_split_lines.has_value());
return split_lines(kind);
}
void Path::generate_path_graph()
{
// Generate a (possibly) disconnected cyclic directed graph
// of the line segments in the path.
// This graph will be used to determine whether a line should
// be considered as part of an edge for the shape
// FIXME: This will not chop lines up, so we might still have some
// filling artifacts after this, as a line might pass over an edge
// but be itself a part of _another_ polygon.
HashMap<u32, OwnPtr<PathGraphNode>> graph;
m_graph_node_map = move(graph);
const auto& lines = split_lines();
if (!lines.size())
return;
// now use scanline to find intersecting lines
auto scanline = lines.first().maximum_y;
auto last_line = lines.last().minimum_y;
Vector<LineSegment> active_list;
for (auto& line : lines) {
if (line.maximum_y < scanline)
break;
active_list.append(line);
}
while (scanline >= last_line) {
if (active_list.size() > 1) {
quick_sort(active_list, [](const auto& line0, const auto& line1) {
return line1.x < line0.x;
});
// for every two lines next to each other in the active list
// figure out if they intersect, if they do, store
// the right line as the child of the left line
// in the path graph
for (size_t i = 1; i < active_list.size(); ++i) {
auto& left_line = active_list[i - 1];
auto& right_line = active_list[i];
auto left_hash = hash_line(left_line.from, left_line.to);
auto right_hash = hash_line(right_line.from, right_line.to);
auto maybe_left_entry = m_graph_node_map.value().get(left_hash);
auto maybe_right_entry = m_graph_node_map.value().get(right_hash);
if (!maybe_left_entry.has_value()) {
auto left_entry = make<PathGraphNode>(left_hash, left_line);
m_graph_node_map.value().set(left_hash, move(left_entry));
maybe_left_entry = m_graph_node_map.value().get(left_hash);
}
if (!maybe_right_entry.has_value()) {
auto right_entry = make<PathGraphNode>(right_hash, right_line);
m_graph_node_map.value().set(right_hash, move(right_entry));
maybe_right_entry = m_graph_node_map.value().get(right_hash);
}
// check all four sides for possible intersection
if (((int)fabs(left_line.x - right_line.x)) <= 1
|| ((int)fabs(left_line.x - right_line.x + left_line.inverse_slope)) <= 1
|| ((int)fabs(left_line.x - right_line.x + right_line.inverse_slope)) <= 1
|| ((int)fabs(left_line.x - right_line.x + +right_line.inverse_slope + left_line.inverse_slope)) <= 1) {
const_cast<PathGraphNode*>(maybe_left_entry.value())->children.append(maybe_right_entry.value());
}
left_line.x -= left_line.inverse_slope;
}
active_list.last().x -= active_list.last().inverse_slope;
}
--scanline;
// remove any edge that goes out of bound from the active list
for (size_t i = 0, count = active_list.size(); i < count; ++i) {
if (scanline <= active_list[i].minimum_y) {
active_list.remove(i);
--count;
--i;
}
}
}
}
bool Path::is_part_of_closed_polygon(const Point& p0, const Point& p1)
{
if (!m_graph_node_map.has_value())
generate_path_graph();
ASSERT(m_graph_node_map.has_value());
auto hash = hash_line(p0, p1);
auto maybe_entry = m_graph_node_map.value().get(hash);
if (!maybe_entry.has_value())
return true;
const auto& entry = maybe_entry.value();
// check if the entry is part of a loop
auto is_part_of_loop = false;
HashTable<u32> visited;
Vector<const PathGraphNode*> queue;
queue.append(entry);
for (; queue.size();) {
const auto* node = queue.take_first();
if (visited.contains(node->hash))
continue;
visited.set(node->hash);
if (node == entry) {
is_part_of_loop = true;
break;
}
}
return is_part_of_loop;
}
// FIXME: We need a better hash, and a wider type
unsigned Path::hash_line(const Point& from, const Point& to)
{
u32 p0 = pair_int_hash(from.x(), from.y());
u32 p1 = pair_int_hash(to.x(), to.y());
return pair_int_hash(p0, p1);
}
}