ladybird/Libraries/LibJS/Runtime/VM.h
Andreas Kling 6861c619c6 LibJS: Move most of Interpreter into VM
This patch moves the exception state, call stack and scope stack from
Interpreter to VM. I'm doing this to help myself discover what the
split between Interpreter and VM should be, by shuffling things around
and seeing what falls where.

With these changes, we no longer have a persistent lexical environment
for the current global object on the Interpreter's call stack. Instead,
we push/pop that environment on Interpreter::run() enter/exit.
Since it should only be used to find the global "this", and not for
variable storage (that goes directly into the global object instead!),
I had to insert some short-circuiting when walking the environment
parent chain during variable lookup.

Note that this is a "stepping stone" commit, not a final design.
2020-09-27 20:26:58 +02:00

237 lines
7.2 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/FlyString.h>
#include <AK/HashMap.h>
#include <AK/RefCounted.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Runtime/ErrorTypes.h>
#include <LibJS/Runtime/Exception.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
enum class ScopeType {
None,
Function,
Block,
Try,
Breakable,
Continuable,
};
struct ScopeFrame {
ScopeType type;
NonnullRefPtr<ScopeNode> scope_node;
bool pushed_environment { false };
};
struct CallFrame {
FlyString function_name;
Value this_value;
Vector<Value> arguments;
LexicalEnvironment* environment { nullptr };
};
struct Argument {
FlyString name;
Value value;
};
typedef Vector<Argument, 8> ArgumentVector;
class VM : public RefCounted<VM> {
public:
static NonnullRefPtr<VM> create();
~VM();
Heap& heap() { return m_heap; }
const Heap& heap() const { return m_heap; }
Interpreter& interpreter();
Interpreter* interpreter_if_exists();
void push_interpreter(Interpreter&);
void pop_interpreter(Interpreter&);
Exception* exception()
{
return m_exception;
}
void clear_exception() { m_exception = nullptr; }
class InterpreterExecutionScope {
public:
InterpreterExecutionScope(Interpreter&);
~InterpreterExecutionScope();
private:
Interpreter& m_interpreter;
};
void gather_roots(HashTable<Cell*>&);
#define __JS_ENUMERATE(SymbolName, snake_name) \
Symbol* well_known_symbol_##snake_name() const { return m_well_known_symbol_##snake_name; }
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
Symbol* get_global_symbol(const String& description);
PrimitiveString& empty_string() { return *m_empty_string; }
CallFrame& push_call_frame()
{
m_call_stack.append({ {}, js_undefined(), {}, nullptr });
return m_call_stack.last();
}
void pop_call_frame() { m_call_stack.take_last(); }
const CallFrame& call_frame() { return m_call_stack.last(); }
const Vector<CallFrame>& call_stack() const { return m_call_stack; }
Vector<CallFrame>& call_stack() { return m_call_stack; }
const LexicalEnvironment* current_environment() const { return m_call_stack.last().environment; }
LexicalEnvironment* current_environment() { return m_call_stack.last().environment; }
bool in_strict_mode() const;
template<typename Callback>
void for_each_argument(Callback callback)
{
if (m_call_stack.is_empty())
return;
for (auto& value : m_call_stack.last().arguments)
callback(value);
}
size_t argument_count() const
{
if (m_call_stack.is_empty())
return 0;
return m_call_stack.last().arguments.size();
}
Value argument(size_t index) const
{
if (m_call_stack.is_empty())
return {};
auto& arguments = m_call_stack.last().arguments;
return index < arguments.size() ? arguments[index] : js_undefined();
}
Value this_value(Object& global_object) const
{
if (m_call_stack.is_empty())
return &global_object;
return m_call_stack.last().this_value;
}
Value last_value() const { return m_last_value; }
bool underscore_is_last_value() const { return m_underscore_is_last_value; }
void set_underscore_is_last_value(bool b) { m_underscore_is_last_value = b; }
void unwind(ScopeType type, FlyString label = {})
{
m_unwind_until = type;
m_unwind_until_label = label;
}
void stop_unwind() { m_unwind_until = ScopeType::None; }
bool should_unwind_until(ScopeType type, FlyString label) const
{
if (m_unwind_until_label.is_null())
return m_unwind_until == type;
return m_unwind_until == type && m_unwind_until_label == label;
}
bool should_unwind() const { return m_unwind_until != ScopeType::None; }
Value get_variable(const FlyString& name, GlobalObject&);
void set_variable(const FlyString& name, Value, GlobalObject&, bool first_assignment = false);
Reference get_reference(const FlyString& name);
void enter_scope(const ScopeNode&, ArgumentVector, ScopeType, GlobalObject&);
void exit_scope(const ScopeNode&);
template<typename T, typename... Args>
void throw_exception(GlobalObject& global_object, Args&&... args)
{
return throw_exception(global_object, T::create(global_object, forward<Args>(args)...));
}
void throw_exception(Exception*);
void throw_exception(GlobalObject& global_object, Value value)
{
return throw_exception(heap().allocate<Exception>(global_object, value));
}
template<typename T, typename... Args>
void throw_exception(GlobalObject& global_object, ErrorType type, Args&&... args)
{
return throw_exception(global_object, T::create(global_object, String::format(type.message(), forward<Args>(args)...)));
}
Value execute_statement(GlobalObject&, const Statement&, ArgumentVector = {}, ScopeType = ScopeType::Block);
Value construct(Function&, Function& new_target, Optional<MarkedValueList> arguments, GlobalObject&);
String join_arguments() const;
Value resolve_this_binding() const;
const LexicalEnvironment* get_this_environment() const;
Value get_new_target() const;
private:
VM();
Exception* m_exception { nullptr };
Heap m_heap;
Vector<Interpreter*> m_interpreters;
Vector<ScopeFrame> m_scope_stack;
Vector<CallFrame> m_call_stack;
Value m_last_value;
ScopeType m_unwind_until { ScopeType::None };
FlyString m_unwind_until_label;
bool m_underscore_is_last_value { false };
HashMap<String, Symbol*> m_global_symbol_map;
PrimitiveString* m_empty_string { nullptr };
#define __JS_ENUMERATE(SymbolName, snake_name) \
Symbol* m_well_known_symbol_##snake_name { nullptr };
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
};
}