mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-25 14:05:15 +00:00
180 lines
5.1 KiB
C++
180 lines
5.1 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "MCTSTree.h"
|
|
#include <AK/String.h>
|
|
#include <stdlib.h>
|
|
|
|
MCTSTree::MCTSTree(const Chess::Board& board, double exploration_parameter, MCTSTree* parent)
|
|
: m_parent(parent)
|
|
, m_exploration_parameter(exploration_parameter)
|
|
, m_board(board)
|
|
{
|
|
if (m_parent)
|
|
m_eval_method = m_parent->eval_method();
|
|
}
|
|
|
|
MCTSTree& MCTSTree::select_leaf()
|
|
{
|
|
if (!expanded() || m_children.size() == 0)
|
|
return *this;
|
|
|
|
MCTSTree* node = nullptr;
|
|
double max_uct = -double(INFINITY);
|
|
for (auto& child : m_children) {
|
|
double uct = child.uct(m_board.turn());
|
|
if (uct >= max_uct) {
|
|
max_uct = uct;
|
|
node = &child;
|
|
}
|
|
}
|
|
ASSERT(node);
|
|
return node->select_leaf();
|
|
}
|
|
|
|
MCTSTree& MCTSTree::expand()
|
|
{
|
|
ASSERT(!expanded() || m_children.size() == 0);
|
|
|
|
if (!m_moves_generated) {
|
|
m_board.generate_moves([&](Chess::Move move) {
|
|
Chess::Board clone = m_board;
|
|
clone.apply_move(move);
|
|
m_children.append(make<MCTSTree>(clone, m_exploration_parameter, this));
|
|
return IterationDecision::Continue;
|
|
});
|
|
m_moves_generated = true;
|
|
}
|
|
|
|
if (m_children.size() == 0) {
|
|
return *this;
|
|
}
|
|
|
|
for (auto& child : m_children) {
|
|
if (child.m_simulations == 0) {
|
|
return child;
|
|
}
|
|
}
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
int MCTSTree::simulate_game() const
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
Chess::Board clone = m_board;
|
|
while (!clone.game_finished()) {
|
|
clone.apply_move(clone.random_move());
|
|
}
|
|
return clone.game_score();
|
|
}
|
|
|
|
int MCTSTree::heuristic() const
|
|
{
|
|
if (m_board.game_finished())
|
|
return m_board.game_score();
|
|
|
|
double winchance = max(min(double(m_board.material_imbalance()) / 6, 1.0), -1.0);
|
|
|
|
double random = double(rand()) / RAND_MAX;
|
|
if (winchance >= random)
|
|
return 1;
|
|
if (winchance <= -random)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void MCTSTree::apply_result(int game_score)
|
|
{
|
|
m_simulations++;
|
|
m_white_points += game_score;
|
|
|
|
if (m_parent)
|
|
m_parent->apply_result(game_score);
|
|
}
|
|
|
|
void MCTSTree::do_round()
|
|
{
|
|
auto& node = select_leaf().expand();
|
|
|
|
int result;
|
|
if (m_eval_method == EvalMethod::Simulation) {
|
|
result = node.simulate_game();
|
|
} else {
|
|
result = node.heuristic();
|
|
}
|
|
node.apply_result(result);
|
|
}
|
|
|
|
Chess::Move MCTSTree::best_move() const
|
|
{
|
|
int score_multiplier = (m_board.turn() == Chess::Colour::White) ? 1 : -1;
|
|
|
|
Chess::Move best_move = { { 0, 0 }, { 0, 0 } };
|
|
double best_score = -double(INFINITY);
|
|
ASSERT(m_children.size());
|
|
for (auto& node : m_children) {
|
|
double node_score = node.expected_value() * score_multiplier;
|
|
if (node_score >= best_score) {
|
|
// The best move is the last move made in the child.
|
|
best_move = node.m_board.moves()[node.m_board.moves().size() - 1];
|
|
best_score = node_score;
|
|
}
|
|
}
|
|
|
|
return best_move;
|
|
}
|
|
|
|
double MCTSTree::expected_value() const
|
|
{
|
|
if (m_simulations == 0)
|
|
return 0;
|
|
|
|
return double(m_white_points) / m_simulations;
|
|
}
|
|
|
|
double MCTSTree::uct(Chess::Colour colour) const
|
|
{
|
|
// UCT: Upper Confidence Bound Applied to Trees.
|
|
// Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"
|
|
|
|
// Fun fact: Szepesvári was my data structures professor.
|
|
double expected = expected_value() * ((colour == Chess::Colour::White) ? 1 : -1);
|
|
return expected + m_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
|
|
}
|
|
|
|
bool MCTSTree::expanded() const
|
|
{
|
|
if (!m_moves_generated)
|
|
return false;
|
|
|
|
for (auto& child : m_children) {
|
|
if (child.m_simulations == 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|