ladybird/Userland/Libraries/LibDSP/Track.cpp
kleines Filmröllchen 9035d9e845 LibDSP+Piano: Convert DSP APIs to accept entire sample ranges
This has mainly performance benefits, so that we only need to call into
all processors once for every audio buffer segment. It requires
adjusting quite some logic in most processors and in Track, as we have
to consider a larger collection of notes and samples at each step.

There's some cautionary TODOs in the currently unused LibDSP tracks
because they don't do things properly yet.
2022-05-13 00:47:26 +02:00

124 lines
4.1 KiB
C++

/*
* Copyright (c) 2021, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/FixedArray.h>
#include <AK/NoAllocationGuard.h>
#include <AK/Optional.h>
#include <AK/StdLibExtras.h>
#include <AK/TypedTransfer.h>
#include <AK/Types.h>
#include <LibDSP/Music.h>
#include <LibDSP/Processor.h>
#include <LibDSP/Track.h>
namespace LibDSP {
bool Track::add_processor(NonnullRefPtr<Processor> new_processor)
{
m_processor_chain.append(move(new_processor));
if (!check_processor_chain_valid()) {
(void)m_processor_chain.take_last();
return false;
}
return true;
}
bool Track::check_processor_chain_valid_with_initial_type(SignalType initial_type) const
{
Processor const* previous_processor = nullptr;
for (auto& processor : m_processor_chain) {
// The first processor must have the given initial signal type as input.
if (previous_processor == nullptr) {
if (processor.input_type() != initial_type)
return false;
} else if (previous_processor->output_type() != processor.input_type())
return false;
previous_processor = &processor;
}
return true;
}
bool AudioTrack::check_processor_chain_valid() const
{
return check_processor_chain_valid_with_initial_type(SignalType::Sample);
}
bool NoteTrack::check_processor_chain_valid() const
{
return check_processor_chain_valid_with_initial_type(SignalType::Note);
}
ErrorOr<void> Track::resize_internal_buffers_to(size_t buffer_size)
{
m_secondary_sample_buffer = TRY(FixedArray<Sample>::try_create(buffer_size));
return {};
}
void Track::current_signal(FixedArray<Sample>& output_signal)
{
// This is real-time code. We must NEVER EVER EVER allocate.
NoAllocationGuard guard;
VERIFY(output_signal.size() == m_secondary_sample_buffer.get<FixedArray<Sample>>().size());
compute_current_clips_signal();
Signal* source_signal = &m_current_signal;
// This provides an audio buffer of the right size. It is not allocated here, but whenever we are informed about a buffer size change.
Signal* target_signal = &m_secondary_sample_buffer;
for (auto& processor : m_processor_chain) {
// Depending on what the processor needs to have as output, we need to place either a pre-allocated note hash map or a pre-allocated sample buffer in the target signal.
if (processor.output_type() == SignalType::Note)
target_signal = &m_secondary_note_buffer;
else
target_signal = &m_secondary_sample_buffer;
processor.process(*source_signal, *target_signal);
swap(source_signal, target_signal);
}
VERIFY(source_signal->type() == SignalType::Sample);
VERIFY(output_signal.size() == source_signal->get<FixedArray<Sample>>().size());
// This is one final unavoidable memcopy. Otherwise we need to special-case the last processor or
AK::TypedTransfer<Sample>::copy(output_signal.data(), source_signal->get<FixedArray<Sample>>().data(), output_signal.size());
}
void NoteTrack::compute_current_clips_signal()
{
// Consider the entire time duration.
TODO();
u32 time = m_transport->time();
// Find the currently playing clip.
NoteClip* playing_clip = nullptr;
for (auto& clip : m_clips) {
if (clip.start() <= time && clip.end() >= time) {
playing_clip = &clip;
break;
}
}
auto& current_notes = m_current_signal.get<RollNotes>();
m_current_signal.get<RollNotes>().clear_with_capacity();
if (playing_clip == nullptr)
return;
// FIXME: performance?
for (auto const& note_list : playing_clip->notes()) {
for (auto const& note : note_list) {
if (note.on_sample >= time && note.off_sample >= time)
break;
if (note.on_sample <= time && note.off_sample >= time)
current_notes.set(note.pitch, note);
}
}
}
void AudioTrack::compute_current_clips_signal()
{
// This is quite involved as we need to look at multiple clips and take looping into account.
TODO();
}
}