ladybird/Libraries/LibCrypto/Cipher/AES.cpp
AnotherTest 899ca245ae LibCrypto: Implement Cipher and AES_CBC
Also adds a test program to userland
2020-05-02 12:24:10 +02:00

422 lines
16 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/StringBuilder.h>
#include <LibCrypto/Cipher/AES.h>
namespace Crypto {
template <typename T>
constexpr u32 get_key(T pt)
{
return ((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2] << 8) ^ ((u32)(pt)[3]);
}
constexpr void swap_keys(u32* keys, size_t i, size_t j)
{
u32 temp = keys[i];
keys[i] = keys[j];
keys[j] = temp;
}
String AESCipherBlock::to_string() const
{
StringBuilder builder;
for (size_t i = 0; i < BLOCK_SIZE / 8; ++i)
builder.appendf("%02x", m_data[i]);
return builder.build();
}
String AESCipherKey::to_string() const
{
StringBuilder builder;
for (size_t i = 0; i < (rounds() + 1) * 4; ++i)
builder.appendf("%02x", m_rd_keys[i]);
return builder.build();
}
void AESCipherKey::expand_encrypt_key(const StringView& user_key, size_t bits)
{
u32* round_key;
u32 temp;
size_t i { 0 };
ASSERT(!user_key.is_null());
ASSERT(is_valid_key_size(bits));
round_key = round_keys();
if (bits == 128) {
m_rounds = 10;
} else if (bits == 192) {
m_rounds = 12;
} else {
m_rounds = 14;
}
round_key[0] = get_key(user_key.substring_view(0, 4).characters_without_null_termination());
round_key[1] = get_key(user_key.substring_view(4, 4).characters_without_null_termination());
round_key[2] = get_key(user_key.substring_view(8, 4).characters_without_null_termination());
round_key[3] = get_key(user_key.substring_view(12, 4).characters_without_null_termination());
if (bits == 128) {
for (;;) {
temp = round_key[3];
// clang-format off
round_key[4] = round_key[0] ^
(Tables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^
(Tables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp >> 24) ] & 0x000000ff) ^ Tables::RCON[i];
// clang-format on
round_key[5] = round_key[1] ^ round_key[4];
round_key[6] = round_key[2] ^ round_key[5];
round_key[7] = round_key[3] ^ round_key[6];
++i;
if (i == 10)
break;
round_key += 4;
}
return;
}
round_key[4] = get_key(user_key.substring_view(16, 4).characters_without_null_termination());
round_key[5] = get_key(user_key.substring_view(20, 4).characters_without_null_termination());
if (bits == 192) {
for (;;) {
temp = round_key[5];
// clang-format off
round_key[6] = round_key[0] ^
(Tables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^
(Tables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp >> 24) ] & 0x000000ff) ^ Tables::RCON[i];
// clang-format on
round_key[7] = round_key[1] ^ round_key[6];
round_key[8] = round_key[2] ^ round_key[7];
round_key[9] = round_key[3] ^ round_key[8];
++i;
if (i == 8)
break;
round_key[10] = round_key[4] ^ round_key[9];
round_key[11] = round_key[5] ^ round_key[10];
round_key += 6;
}
return;
}
round_key[6] = get_key(user_key.substring_view(24, 4).characters_without_null_termination());
round_key[7] = get_key(user_key.substring_view(28, 4).characters_without_null_termination());
if (true) { // bits == 256
for (;;) {
temp = round_key[7];
// clang-format off
round_key[8] = round_key[0] ^
(Tables::Encode2[(temp >> 16) & 0xff] & 0xff000000) ^
(Tables::Encode3[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp ) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp >> 24) ] & 0x000000ff) ^ Tables::RCON[i];
// clang-format on
round_key[9] = round_key[1] ^ round_key[8];
round_key[10] = round_key[2] ^ round_key[9];
round_key[11] = round_key[3] ^ round_key[10];
++i;
if (i == 7)
break;
temp = round_key[11];
// clang-format off
round_key[12] = round_key[4] ^
(Tables::Encode2[(temp >> 24) ] & 0xff000000) ^
(Tables::Encode3[(temp >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(temp >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(temp ) & 0xff] & 0x000000ff) ;
// clang-format on
round_key[13] = round_key[5] ^ round_key[12];
round_key[14] = round_key[6] ^ round_key[13];
round_key[15] = round_key[7] ^ round_key[14];
round_key += 8;
}
return;
}
}
void AESCipherKey::expand_decrypt_key(const StringView& user_key, size_t bits)
{
u32* round_key;
expand_encrypt_key(user_key, bits);
round_key = round_keys();
// reorder round keys
for (size_t i = 0, j = 4 * rounds(); i < j; i += 4, j -= 4) {
swap_keys(round_key, i, j);
swap_keys(round_key, i + 1, j + 1);
swap_keys(round_key, i + 2, j + 2);
swap_keys(round_key, i + 3, j + 3);
}
// apply inverse mix-column to middle rounds
for (size_t i = 1; i < rounds(); ++i) {
round_key += 4;
// clang-format off
round_key[0] =
Tables::Decode0[Tables::Encode1[(round_key[0] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[0] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[0] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[0] ) & 0xff] & 0xff] ;
round_key[1] =
Tables::Decode0[Tables::Encode1[(round_key[1] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[1] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[1] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[1] ) & 0xff] & 0xff] ;
round_key[2] =
Tables::Decode0[Tables::Encode1[(round_key[2] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[2] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[2] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[2] ) & 0xff] & 0xff] ;
round_key[3] =
Tables::Decode0[Tables::Encode1[(round_key[3] >> 24) ] & 0xff] ^
Tables::Decode1[Tables::Encode1[(round_key[3] >> 16) & 0xff] & 0xff] ^
Tables::Decode2[Tables::Encode1[(round_key[3] >> 8) & 0xff] & 0xff] ^
Tables::Decode3[Tables::Encode1[(round_key[3] ) & 0xff] & 0xff] ;
// clang-format on
}
}
void AESCipher::encrypt_block(const AESCipherBlock& in, AESCipherBlock& out)
{
u32 s0, s1, s2, s3, t0, t1, t2, t3;
size_t r { 0 };
const auto& dec_key = key();
const auto* round_keys = dec_key.round_keys();
s0 = get_key(in.data().offset_pointer(0)) ^ round_keys[0];
s1 = get_key(in.data().offset_pointer(4)) ^ round_keys[1];
s2 = get_key(in.data().offset_pointer(8)) ^ round_keys[2];
s3 = get_key(in.data().offset_pointer(12)) ^ round_keys[3];
r = dec_key.rounds() >> 1;
// apply the first |r - 1| rounds
auto i { 0 };
for (;;) {
++i;
// clang-format off
t0 = Tables::Encode0[(s0 >> 24) ] ^
Tables::Encode1[(s1 >> 16) & 0xff] ^
Tables::Encode2[(s2 >> 8) & 0xff] ^
Tables::Encode3[(s3 ) & 0xff] ^ round_keys[4];
t1 = Tables::Encode0[(s1 >> 24) ] ^
Tables::Encode1[(s2 >> 16) & 0xff] ^
Tables::Encode2[(s3 >> 8) & 0xff] ^
Tables::Encode3[(s0 ) & 0xff] ^ round_keys[5];
t2 = Tables::Encode0[(s2 >> 24) ] ^
Tables::Encode1[(s3 >> 16) & 0xff] ^
Tables::Encode2[(s0 >> 8) & 0xff] ^
Tables::Encode3[(s1 ) & 0xff] ^ round_keys[6];
t3 = Tables::Encode0[(s3 >> 24) ] ^
Tables::Encode1[(s0 >> 16) & 0xff] ^
Tables::Encode2[(s1 >> 8) & 0xff] ^
Tables::Encode3[(s2 ) & 0xff] ^ round_keys[7];
// clang-format on
round_keys += 8;
--r;
++i;
if (r == 0)
break;
// clang-format off
s0 = Tables::Encode0[(t0 >> 24) ] ^
Tables::Encode1[(t1 >> 16) & 0xff] ^
Tables::Encode2[(t2 >> 8) & 0xff] ^
Tables::Encode3[(t3 ) & 0xff] ^ round_keys[0];
s1 = Tables::Encode0[(t1 >> 24) ] ^
Tables::Encode1[(t2 >> 16) & 0xff] ^
Tables::Encode2[(t3 >> 8) & 0xff] ^
Tables::Encode3[(t0 ) & 0xff] ^ round_keys[1];
s2 = Tables::Encode0[(t2 >> 24) ] ^
Tables::Encode1[(t3 >> 16) & 0xff] ^
Tables::Encode2[(t0 >> 8) & 0xff] ^
Tables::Encode3[(t1 ) & 0xff] ^ round_keys[2];
s3 = Tables::Encode0[(t3 >> 24) ] ^
Tables::Encode1[(t0 >> 16) & 0xff] ^
Tables::Encode2[(t1 >> 8) & 0xff] ^
Tables::Encode3[(t2 ) & 0xff] ^ round_keys[3];
// clang-format on
}
// apply the last round and put the encrypted data into out
// clang-format off
s0 = (Tables::Encode2[(t0 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t3 ) & 0xff] & 0x000000ff) ^ round_keys[0];
out.put(0, s0);
s1 = (Tables::Encode2[(t1 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t0 ) & 0xff] & 0x000000ff) ^ round_keys[1];
out.put(4, s1);
s2 = (Tables::Encode2[(t2 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t3 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t0 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t1 ) & 0xff] & 0x000000ff) ^ round_keys[2];
out.put(8, s2);
s3 = (Tables::Encode2[(t3 >> 24) ] & 0xff000000) ^
(Tables::Encode3[(t0 >> 16) & 0xff] & 0x00ff0000) ^
(Tables::Encode0[(t1 >> 8) & 0xff] & 0x0000ff00) ^
(Tables::Encode1[(t2 ) & 0xff] & 0x000000ff) ^ round_keys[3];
out.put(12, s3);
// clang-format on
}
void AESCipher::decrypt_block(const AESCipherBlock& in, AESCipherBlock& out)
{
u32 s0, s1, s2, s3, t0, t1, t2, t3;
size_t r { 0 };
const auto& dec_key = key();
const auto* round_keys = dec_key.round_keys();
s0 = get_key(in.data().offset_pointer(0)) ^ round_keys[0];
s1 = get_key(in.data().offset_pointer(4)) ^ round_keys[1];
s2 = get_key(in.data().offset_pointer(8)) ^ round_keys[2];
s3 = get_key(in.data().offset_pointer(12)) ^ round_keys[3];
r = dec_key.rounds() >> 1;
// apply the first |r - 1| rounds
for (;;) {
// clang-format off
t0 = Tables::Decode0[(s0 >> 24) ] ^
Tables::Decode1[(s3 >> 16) & 0xff] ^
Tables::Decode2[(s2 >> 8) & 0xff] ^
Tables::Decode3[(s1 ) & 0xff] ^ round_keys[4];
t1 = Tables::Decode0[(s1 >> 24) ] ^
Tables::Decode1[(s0 >> 16) & 0xff] ^
Tables::Decode2[(s3 >> 8) & 0xff] ^
Tables::Decode3[(s2 ) & 0xff] ^ round_keys[5];
t2 = Tables::Decode0[(s2 >> 24) ] ^
Tables::Decode1[(s1 >> 16) & 0xff] ^
Tables::Decode2[(s0 >> 8) & 0xff] ^
Tables::Decode3[(s3 ) & 0xff] ^ round_keys[6];
t3 = Tables::Decode0[(s3 >> 24) ] ^
Tables::Decode1[(s2 >> 16) & 0xff] ^
Tables::Decode2[(s1 >> 8) & 0xff] ^
Tables::Decode3[(s0 ) & 0xff] ^ round_keys[7];
// clang-format on
round_keys += 8;
--r;
if (r == 0)
break;
// clang-format off
s0 = Tables::Decode0[(t0 >> 24) ] ^
Tables::Decode1[(t3 >> 16) & 0xff] ^
Tables::Decode2[(t2 >> 8) & 0xff] ^
Tables::Decode3[(t1 ) & 0xff] ^ round_keys[0];
s1 = Tables::Decode0[(t1 >> 24) ] ^
Tables::Decode1[(t0 >> 16) & 0xff] ^
Tables::Decode2[(t3 >> 8) & 0xff] ^
Tables::Decode3[(t2 ) & 0xff] ^ round_keys[1];
s2 = Tables::Decode0[(t2 >> 24) ] ^
Tables::Decode1[(t1 >> 16) & 0xff] ^
Tables::Decode2[(t0 >> 8) & 0xff] ^
Tables::Decode3[(t3 ) & 0xff] ^ round_keys[2];
s3 = Tables::Decode0[(t3 >> 24) ] ^
Tables::Decode1[(t2 >> 16) & 0xff] ^
Tables::Decode2[(t1 >> 8) & 0xff] ^
Tables::Decode3[(t0 ) & 0xff] ^ round_keys[3];
// clang-format on
}
// apply the last round and put the decrypted data into out
// clang-format off
s0 = ((u32)Tables::Decode4[(t0 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t3 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t2 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t1 ) & 0xff] ) ^ round_keys[0];
out.put(0, s0);
s1 = ((u32)Tables::Decode4[(t1 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t0 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t3 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t2 ) & 0xff] ) ^ round_keys[1];
out.put(4, s1);
s2 = ((u32)Tables::Decode4[(t2 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t1 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t0 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t3 ) & 0xff] ) ^ round_keys[2];
out.put(8, s2);
s3 = ((u32)Tables::Decode4[(t3 >> 24) ] << 24) ^
((u32)Tables::Decode4[(t2 >> 16) & 0xff] << 16) ^
((u32)Tables::Decode4[(t1 >> 8) & 0xff] << 8) ^
((u32)Tables::Decode4[(t0 ) & 0xff] ) ^ round_keys[3];
out.put(12, s3);
// clang-format on
}
void AESCipherBlock::overwrite(const ByteBuffer& buffer)
{
overwrite(buffer.data(), buffer.size());
}
void AESCipherBlock::overwrite(const u8* data, size_t length)
{
ASSERT(length <= m_data.size());
m_data.overwrite(0, data, length);
if (length < m_data.size()) {
switch (padding_mode()) {
case PaddingMode::Null:
// fill with zeros
__builtin_memset(m_data.data() + length, 0, m_data.size() - length);
break;
case PaddingMode::CMS:
// fill with the length of the padding bytes
__builtin_memset(m_data.data() + length, m_data.size() - length, m_data.size() - length);
break;
default:
// FIXME: We should handle the rest of the common padding modes
ASSERT_NOT_REACHED();
}
}
}
}