ladybird/Userland/Libraries/LibDSP/Synthesizers.cpp
kleines Filmröllchen 9035d9e845 LibDSP+Piano: Convert DSP APIs to accept entire sample ranges
This has mainly performance benefits, so that we only need to call into
all processors once for every audio buffer segment. It requires
adjusting quite some logic in most processors and in Track, as we have
to consider a larger collection of notes and samples at each step.

There's some cautionary TODOs in the currently unused LibDSP tracks
because they don't do things properly yet.
2022-05-13 00:47:26 +02:00

154 lines
5.2 KiB
C++

/*
* Copyright (c) 2021-2022, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/HashMap.h>
#include <AK/Math.h>
#include <AK/Random.h>
#include <AK/RefPtr.h>
#include <AK/StdLibExtras.h>
#include <LibAudio/Sample.h>
#include <LibDSP/Envelope.h>
#include <LibDSP/Processor.h>
#include <LibDSP/Synthesizers.h>
namespace LibDSP::Synthesizers {
Classic::Classic(NonnullRefPtr<Transport> transport)
: LibDSP::SynthesizerProcessor(transport)
, m_waveform("Waveform"sv, Waveform::Saw)
, m_attack("Attack"sv, 0.01, 2000, 5, Logarithmic::Yes)
, m_decay("Decay"sv, 0.01, 20'000, 80, Logarithmic::Yes)
, m_sustain("Sustain"sv, 0.001, 1, 0.725, Logarithmic::No)
, m_release("Release", 0.01, 6'000, 120, Logarithmic::Yes)
{
m_parameters.append(m_waveform);
m_parameters.append(m_attack);
m_parameters.append(m_decay);
m_parameters.append(m_sustain);
m_parameters.append(m_release);
}
void Classic::process_impl(Signal const& input_signal, [[maybe_unused]] Signal& output_signal)
{
auto const& in = input_signal.get<RollNotes>();
auto& output_samples = output_signal.get<FixedArray<Sample>>();
// Do this for every time step and set the signal accordingly.
for (size_t sample_index = 0; sample_index < output_samples.size(); ++sample_index) {
Sample& out = output_samples[sample_index];
u32 sample_time = m_transport->time() + sample_index;
SinglyLinkedList<PitchedEnvelope> playing_envelopes;
// "Press" the necessary notes in the internal representation,
// and "release" all of the others
for (u8 i = 0; i < note_frequencies.size(); ++i) {
if (auto maybe_note = in.get(i); maybe_note.has_value())
m_playing_notes.set(i, maybe_note.value());
if (m_playing_notes.contains(i)) {
Envelope note_envelope = m_playing_notes.get(i)->to_envelope(sample_time, m_attack * m_transport->ms_sample_rate(), m_decay * m_transport->ms_sample_rate(), m_release * m_transport->ms_sample_rate());
if (!note_envelope.is_active()) {
m_playing_notes.remove(i);
continue;
}
playing_envelopes.append(PitchedEnvelope { note_envelope, i });
}
}
for (auto envelope : playing_envelopes) {
double volume = volume_from_envelope(envelope);
double wave = wave_position(envelope.note);
out += volume * wave;
}
}
}
// Linear ADSR envelope with no peak adjustment.
double Classic::volume_from_envelope(Envelope const& envelope) const
{
switch (static_cast<EnvelopeState>(envelope)) {
case EnvelopeState::Off:
return 0;
case EnvelopeState::Attack:
return envelope.attack();
case EnvelopeState::Decay:
// As we fade from high (1) to low (headroom above the sustain level) here, use 1-decay as the interpolation.
return (1. - envelope.decay()) * (1. - m_sustain) + m_sustain;
case EnvelopeState::Sustain:
return m_sustain;
case EnvelopeState::Release:
// Same goes for the release fade from high to low.
return (1. - envelope.release()) * m_sustain;
}
VERIFY_NOT_REACHED();
}
double Classic::wave_position(u8 note)
{
switch (m_waveform) {
case Sine:
return sin_position(note);
case Triangle:
return triangle_position(note);
case Square:
return square_position(note);
case Saw:
return saw_position(note);
case Noise:
return noise_position(note);
}
VERIFY_NOT_REACHED();
}
double Classic::samples_per_cycle(u8 note) const
{
return m_transport->sample_rate() / note_frequencies[note];
}
double Classic::sin_position(u8 note) const
{
double spc = samples_per_cycle(note);
double cycle_pos = m_transport->time() / spc;
return AK::sin(cycle_pos * 2 * AK::Pi<double>);
}
// Absolute value of the saw wave "flips" the negative portion into the positive, creating a ramp up and down.
double Classic::triangle_position(u8 note) const
{
double saw = saw_position(note);
return AK::fabs(saw) * 2 - 1;
}
// The first half of the cycle period is 1, the other half -1.
double Classic::square_position(u8 note) const
{
double spc = samples_per_cycle(note);
double progress = AK::fmod(static_cast<double>(m_transport->time()), spc) / spc;
return progress >= 0.5 ? -1 : 1;
}
// Modulus creates inverse saw, which we need to flip and scale.
double Classic::saw_position(u8 note) const
{
double spc = samples_per_cycle(note);
double unscaled = spc - AK::fmod(static_cast<double>(m_transport->time()), spc);
return unscaled / (samples_per_cycle(note) / 2.) - 1;
}
// We resample the noise twenty times per cycle.
double Classic::noise_position(u8 note)
{
double spc = samples_per_cycle(note);
u32 getrandom_interval = max(static_cast<u32>(spc / 2), 1);
// Note that this code only works well if the processor is called for every increment of time.
if (m_transport->time() % getrandom_interval == 0)
last_random[note] = (get_random<u16>() / static_cast<double>(NumericLimits<u16>::max()) - .5) * 2;
return last_random[note];
}
}